
Towards Practical Neural Network Meta-Modeling

by

Bowen Baker

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 18, 2017

Certified by. .
Cèsar Hidalgo

Associate Professor
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Towards Practical Neural Network Meta-Modeling

by

Bowen Baker

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis primarily focuses on the topic of efficient automated procedures for con-
volutional neural network (CNN) architecture search.

We first introduce a novel approach for CNN architecture architecture using 𝑄-
learning, a popular value iteration algorithm from the reinforcement learning com-
munity for sequential decision problems. On the task of object classification, the
𝑄-learning agent outperforms all human crafted models that are similar to those in
the search space. By analysing the underlying weights of the agent, we are also able
to uncover some of the design principles that the agent learned during the search
process.

Reinforcement learning is generally very sample inefficient; in the case of architec-
ture search most approaches require thousands of unique models to be trained. In the
second part of this thesis we introduce simple sequential regression models (SRM) to
predict final performance of a candidate CNN from partially observed learning curves.
We use these performance predictors and empirical variance estimates for practical
early stopping of online optimization procedures. Our SRMs are state-of-the-art in
performance prediction and early stopping.

Thesis Supervisor: Cèsar Hidalgo
Title: Associate Professor

3

4

Acknowledgments

I would like to begin by thanking Nikhil Naik, Otkrist Gupta, and Ramesh Raskar

for welcoming me into the Camera Culture group in the Media Lab and giving me

the freedom explore open ended problems and ideas. Were it not for their support,

contributions, and resources, much of this work would not have been possible.

I would also like to thank my parents for all of their love and support, and for

providing me many opportunities to further my education.

5

6

Contents

1 Introduction 13

1.1 Deep Learning . 13

1.2 Reinforcement Learning . 14

1.3 Hyperparameter Optimization . 15

1.4 Meta-Modeling . 15

1.5 Early Stopping . 16

1.6 Neural Network Performance Prediction 17

1.7 Thesis Contributions . 17

2 Background 19

2.1 Markov Decision Processes and Optimal Control 19

2.2 𝑄-learning . 20

3 Designing Neural Networks Using 𝑄-Learning 23

3.1 Designing Neural Network Architectures with 𝑄-learning 24

3.1.1 The State Space . 25

3.1.2 The Action Space . 26

3.1.3 𝑄-learning Training Procedure 28

3.2 Experiment Details . 29

3.3 Experimental Results . 31

3.3.1 Model Selection Analysis . 31

3.3.2 Top Model Performances . 32

3.3.3 Transfer Learning Ability . 33

7

3.4 Further Analysis of 𝑄-Learning . 34

3.4.1 𝑄-Learning Stability . 34

3.4.2 𝑄-Value Analysis . 35

3.5 All Models Aren’t Created Equal . 36

3.6 Visualizing The Architecture Space 37

4 Performance Prediction for Practical Early Stopping 43

4.1 Method Overview . 44

4.1.1 Modeling Learning Curves . 44

4.1.2 Early Stopping . 45

4.2 Experiments and Results . 47

4.2.1 Datasets and Training Procedures 50

4.2.2 Prediction Performance . 51

4.2.3 Early Stopping for Meta-modeling 54

4.2.4 Early Stopping for Hyperparameter Optimization 56

5 Conclusion and Future Directions 61

A Tables 63

A.0.1 Top Model Architectures . 63

B Figures 67

8

List of Figures

3-1 Designing CNN Architectures with 𝑄-learning 24

3-2 Markov Decision Process for CNN Architecture Generation 25

3-3 Representation size binning . 27

3-4 𝑄-Learning Performance . 31

3-6 MetaQNN Stability . 35

3-5 Architecture Accuracy Distributions versus 𝜖 39

3-7 𝑄-Value Statistics . 40

3-8 CIFAR-10 Architecture Edit Distance t-SNE 41

3-9 SVHN Architecture Edit Distance t-SNE 41

4-1 Early Stopping Example . 44

4-2 Partial Learning Curve Training Data 45

4-3 Performance Prediction Results . 52

4-4 Predicted vs True Values of Final Performance 54

4-5 Simulated Speedup in MetaQNN Search Space 55

4-6 MetaQNN on CIFAR-10 with Early Stopping 56

4-7 Simulated Speedup on Hyperband with Earlier Stopping 57

4-8 Simulated Max Accuracy vs SGD Iterations for Hyperband 58

4-9 Simulated Speedup on Hyperband vs Hyperband Iteration 58

B-1 Performance Prediction Results Versus Training Set Size 68

9

10

List of Tables

3.1 Experimental State Space . 28

3.2 Experimental 𝜖 Schedule . 29

3.3 Error Rate Comparison with CNNs that only use convolution, pooling,

and fully connected layers . 32

3.4 Error Rate Comparison with state-of-the-art methods with complex

layer types . 32

3.5 Transfer Learning Performance for the top MetaQNN (CIFAR-10) model

trained for other tasks . 34

3.6 Comparison with meta-modeling methods 37

4.1 Ablation Analysis for Feature Importance in Prediction Performance . 53

A.1 Top 5 model architectures: CIFAR-10. 63

A.2 Top 5 model architectures: SVHN . 64

A.3 Top 10 model architectures: MNIST 65

11

12

Chapter 1

Introduction

In this thesis, we introduce a reinforcement learning based architecture search method

for deep convolutional neural networks. While automated architecture search meth-

ods have begun to see some success on both visual and text benchmarks [1, 2, 3],

each method is extremely computationally expensive due to the need to repeatedly

train many unique architectures. In an attempt to combat this deficiency, we also

introduce a practical early stopping algorithm based on performance prediction from

partially observed learning curves with simple sequential regression models and vari-

ance estimates.

1.1 Deep Learning

Though the study of neural networks is decades old, the recent groundbreaking results

in object recognition [4], speech recognition [5], game playing [6], and many other

domains have brought the study of deep neural networks (DNN) to the forefront of

academic discussion. These deep models are composed by stacking together non-

linear functions in a hierarchical manner, which leads to the ability for increasing

levels of feature abstraction. Since the deep learning boom, many popular models

have surfaced from the ILSVRC image competitions, e.g. AlexNet [4], Inception [7],

Residual Networks [8], etc.

While these models have proven extremely powerful and general feature extrac-

13

tors, they cannot perform well for every problem specification. For instance, in high

frame-rate real-time applications with limited hardware or in domains with drasti-

cally different input dimensionality these networks cannot be used ‘out of the bag.’

A typical CNN architecture consists of several convolution, pooling, and fully con-

nected layers. While constructing a CNN, a network designer has to make numerous

design choices: the number of layers of each type, the ordering of layers, and the

hyperparameters for each type of layer, e.g., the receptive field size, stride, and num-

ber of receptive fields for a convolution layer. The number of possible choices makes

the design space of CNN architectures extremely large and hence, infeasible for an

exhaustive manual search. There are thus many cases where researchers or engineers

will not have the time, manpower, or expertise to design a network architecture from

scratch specifically for their application. This thesis seeks to introduce a method us-

ing reinforcement learning to take the human out of the loop in architecture selection

and automatically craft architectures for specific tasks using reinforcement learning.

1.2 Reinforcement Learning

Reinforcement learning is a branch of machine learning concerned with optimizing

an agent’s sequence of actions such that it maximizes its total future reward in an

environment through trial and error. Recently there has been much work at the inter-

section of reinforcement learning and deep learning. For instance, methods using con-

volutional neural networks (CNNs) to approximate the 𝑄-learning utility function [9]

have been successful in game-playing agents [6, 10] and robotic control [11, 12]. These

methods rely on phases of exploration, where the agent tries to learn about its en-

vironment through sampling, and exploitation, where the agent uses what it learned

about the environment to find better paths. In traditional reinforcement learning

settings, over-exploration can lead to slow convergence times, yet over-exploitation

can lead to convergence to local minima [13]. However, in the case of large or con-

tinuous state spaces, the 𝜖-greedy strategy of learning has been empirically shown

to converge [14]. Finally, when the state space is large or exploration is costly, the

14

experience replay technique [15] has proved useful in experimental settings [16, 6].

We incorporate these techniques—𝑄-learning, the 𝜖-greedy strategy and experience

replay—in our algorithm design.

1.3 Hyperparameter Optimization

In the context of neural networks, we define hyperparameter optimization as an algo-

rithmic approach for finding optimal values of design-independent hyperparameters

such as learning rate and batch size, along with a limited search through the network

design space, usually through the space of filter types and sizes. A variety of Bayesian

optimization methods have been proposed for hyperparameter optimization, includ-

ing methods based on sequential model-based optimization (SMAC) [17], Gaussian

processes (GP) [18], and TPE [19]. To improve on the scalability of Bayesian meth-

ods, Snoek et al. [20] utilize neural networks to efficiently model distributions over

functions. However, random search or grid search [21] is most commonly used in prac-

tical settings. Recently, Li et al. [22] introduced Hyperband, a multi-armed bandit-

based efficient random search technique that outperforms state-of-the-art Bayesian

optimization methods.

1.4 Meta-Modeling

In the context of neural networks, we define meta-modeling as an algorithmic ap-

proach for designing network architectures from scratch. The earliest meta-modeling

approaches for neural net design were based on genetic algorithms [23, 24, 25]. Sug-

anuma et al. [26] use Cartesian genetic programming to obtain competitive results on

image classification tasks. Saxena and Verbeek [27] use densely connected networks

of layers to search for well-performing networks. Another popular tool for meta-

modeling is Bayesian optimization [28]. Saliently, Bergstra et al. [19] utilize Tree of

Parzen Estimators (TPE) to design feed-forward networks.

More recently, there have been experiments on large scale architecture search.

15

Published concurrently to our work, Zoph et al. [2] describe using an LSTM con-

troller trained with policy gradients to design CNNs and recurrent cell architectures.

For their CNN experiment, they constrain the controller to predict a fixed number

of hyperparameters and furthermore constrain the controller to select layer hyper-

parameters in a fixed scaffold, i.e. a set ordering of layer types. For the recurrent

cell experiment they similarly fix the number of hyperparameters and scaffold to a

tree-like topology. Among others, these constraints allow them to find extremely

competitive architectures. In another recent work, Real et al. [3] use a tournament of

pairs genetic algorithm to jointly select CNN architecture and optimization hyperpa-

rameters. Their formulation has the benefit that no further hyperparameter tuning

is required after the final architecture is selected.

While these methods have had success on small benchmark problems such as

CIFAR-10 and Penn Treebank, they use between 2500 and 10000 GPU-days to con-

verge. While GPU-days is an informal metric and these numbers are rough, the

staggering order of magnitude in runtime makes it doubtful that these methods ap-

plicable to domains larger than these toy benchmarks.

1.5 Early Stopping

Early stopping is normally thought of as a type of model regularization, and in some

cases can be shown to be equivalent to the standard Tikhonov regularization. In

this thesis we do not use early stopping as a regularization technique but rather

as a method to accelerate meta-modeling and hyperparameter optimization algo-

rithms. Most hyperparameter optimization and meta-modeling methods suffer com-

putationally because they must train many sub-par configurations. While humans are

relatively good at terminating these configurations early on in training, automated

methods ignorantly complete the entire optimization schedule. Hyperband [22], for

instance, terminates models based on performance comparisons at regular intervals

along the training schedule; however, for most methods, completing the entire train-

ing schedule is necessary because they use the final performance to update some form

16

of acquisition function which is used to select the next configuration for consideration.

In order to perform automatic early stopping, one must therefore estimate the final

performance as well as determine a termination point.

1.6 Neural Network Performance Prediction

There has been limited work on predicting neural network performance during the

training process [29, 30]. Domhan et al. [29] introduce a weighted probabilistic model

for learning curves utilizing a hand-selected set of basis functions and use this model

for speeding up hyperparameter search in small convolutional neural networks (CNNs)

and fully-connected networks (FCNs). Their experimental setup contains large search

spaces for hyperparameters such as learning rate, batch size, and weight decay, along

with limited search spaces for number of layers and number of units. In contrast to our

work, this method does not utilize the learning curve information from different neural

architectures; it independently models the learning curve for each network. We also

note that Swersky et al. [31] develop a Gaussian Process-based method for predicting

individual learning curves for logistic regression models (among others), but not for

neural networks. Building on Domhan et al. [29], Klein et al. [30] train Bayesian

neural networks for predicting unobserved learning curves using a training set of

fully and partially observed learning curves. Our method—based on support vector

machines—is simpler, more efficient, and more accurate than Bayesian neural nets in

a variety of settings, including meta-modeling and hyperparameter optimization. We

summarize the related work on these topics next.

1.7 Thesis Contributions

CNN Architecture Search Using 𝑄-Learning1: We propose a novel method for

neural network architecture search using 𝑄-learning. We show that using this method

and a comparatively modest amount of computational resources, we can outperform

1An abridged version of this chapter appears in Baker et al. [1]

17

all prior hand-crafted models that are close to the architecture search space on many

standard benchmark image classification datasets.

CNN Performance Prediction Using Simple Sequential Regression Mod-

els2: We show that simple sequential regression models such as support vector re-

gression or ordinary least squares can vastly outperform many Bayesian models used

in the literature in the task of optimization performance extrapolation from partially

observed learning curves. We furthermore show that these simple parametric models

can extrapolate learning trajectories of vastly different model architectures, which

has heretofore not been well studied.

Practical Early Stopping for Meta-Modeling Procedures: Using the simple

performance extrapolation models, we experiment with early termination of sub-

par architecture and hyperparameter configurations during an architecture search or

hyperparameter optimization procedures. We show that using an extremely simple

early stopping algorithm based around empirical variance estimates, we can increase

the efficiency of these searches by factors of up to 6.

2An abridged version of this chapter appears in Baker et al. [32]

18

Chapter 2

Background

Here we present a brief background to Markov Decision Processes, optimal control,

policy gradients, and 𝑄-learning.

2.1 Markov Decision Processes and Optimal Control

A Markov Decision Process (MDP) is a formalism used to describe an agent acting

in a possible stochastic environment. An MDP is defined by

∙ 𝒮 – the state space which describes all possible states the agent may be in.

∙ 𝒰 – the action space which describes all possible actions from each state.

∙ 𝑃 (𝑠, 𝑠′|𝑢) – the set of transition probabilities between states given actions

∙ 𝑟(𝑠, 𝑢, 𝑠′) – possibly stochastic reward given to the agent as a function of state,

action, and next state.

In general, it is the goal of reinforcement learning and optimal control algorithms to

maximize the total discounted cumulative future reward 𝑅 =
∑︀∞

𝑡=0 𝛾
𝑡𝑟(𝑠𝑡, 𝑢𝑡, 𝑠𝑡+1),

where 𝛾 ∈ (0, 1) is the discount factor on future rewards. The end goal is to come up

with an optimal policy 𝜋*(𝑠) which maximizes the total future reward. One way to

19

do this is to estimate the value function, defined as

𝐽*(𝑠𝑖) = max
𝑢∈𝒰(𝑠𝑖)

E𝑠𝑗 |𝑠𝑖,𝑢
[︀
E𝑟|𝑠𝑖,𝑢,𝑠𝑗 [𝑟|𝑠𝑖, 𝑢, 𝑠𝑗] + 𝛾𝐽*(𝑠𝑗)

]︀
. (2.1)

An optimal policy given 𝐽* is simply the greedy policy. If a model of the dynamics and

reward are known (or estimated), one can estimate the true value function using value

iteration. If the dynamics or reward function is unknown, then the value function

can be estimated using Q-learning, which is further discussed in Section 2.2.

Alternatively, one can directly optimize the policy by solving

max
𝜋

E[𝑅|𝜋] (2.2)

In large state-action space problems, it is necessary to use a parameterized policy,

𝜋𝜃, which is often a large neural network. Now to learn the policy, we estimate the

gradient of equation 2.2 with respect to 𝜃. A particular 𝜋𝜃 induces a distribution over

trajectories 𝜏 within the environment, and it is easy to show that

∇𝜃E𝜏 [𝑅(𝜏)|𝜋𝜃] = E𝜏 [𝑅(𝜏)∇𝜃 log 𝑝(𝜏)] (2.3)

While we soley use 𝑄-learning in this thesis, we thought it useful to review the policy

gradient algorithm as it is used in other architecture search work [2].

2.2 𝑄-learning

Our method relies on 𝑄-learning, a popular reinforcement learning algorithm. We

now summarize the theoretical formulation of 𝑄-learning, as adopted to our problem.

Consider the task of teaching an agent to find optimal paths as a Markov Decision

Process (MDP) in a finite-horizon environment. Constraining the environment to

be finite-horizon ensures that the agent will deterministically terminate in a finite

number of time steps. In addition, we restrict the environment to have a discrete and

finite state space 𝒮 as well as action space 𝒰 . For any state 𝑠𝑖 ∈ 𝒮, there is a finite

20

set of actions, 𝒰(𝑠𝑖) ⊆ 𝒰 , that the agent can choose from. For each episode, the agent

is trying to optimize the total expected reward 𝑅 =
∑︀𝑇

𝑡=0 𝛾
𝑡𝑟(𝑠𝑡, 𝑢𝑡, 𝑠𝑡+1) where 𝑇 is

the maximum length of an episode.

For any state 𝑠𝑖 ∈ 𝒮 and subsequent action 𝑢 ∈ 𝒰(𝑠𝑖), we define the maximum

total expected reward to be 𝑄*(𝑠𝑖, 𝑢). 𝑄*(·) is known as the action-value function and

individual 𝑄*(𝑠𝑖, 𝑢) are know as 𝑄-values. Noting that 𝐽*(𝑠𝑖) = max𝑢∈𝒰(𝑠𝑖) 𝑄(𝑠𝑖, 𝑢),

we may rewrite equation 2.1 as

𝑄*(𝑠𝑖, 𝑢) = E𝑠𝑗 |𝑠𝑖,𝑢
[︀
E𝑟|𝑠𝑖,𝑢,𝑠𝑗 [𝑟|𝑠𝑖, 𝑢, 𝑠𝑗] + 𝛾 max𝑢′∈𝒰(𝑠𝑗) 𝑄

*(𝑠𝑗, 𝑢
′)
]︀
. (2.4)

In many cases, it is impossible to analytically solve Bellman’s Equation [33], but it

can be formulated as an iterative update

𝑄𝑡+1(𝑠𝑖, 𝑢) = (1 − 𝛼)𝑄𝑡(𝑠𝑖, 𝑢) + 𝛼
[︀
𝑟𝑡 + 𝛾 max𝑢′∈𝒰(𝑠𝑗) 𝑄𝑡(𝑠𝑗, 𝑢

′)
]︀
. (2.5)

Equation 2.5 is the simplest form of 𝑄-learning proposed by [9]. For well formulated

problems, lim𝑡→∞ 𝑄𝑡(𝑠, 𝑢) = 𝑄*(𝑠, 𝑢), as long as each transition is sampled infinitely

many times [33]. The update equation has two parameters: (i) 𝛼 is a 𝑄-learning rate

which determines the weight given to new information over old information, and (ii)

𝛾 is the discount factor which determines the weight given to short-term rewards over

future rewards. The 𝑄-learning algorithm is model-free, in that the learning agent

can solve the task without ever explicitly constructing an estimate of environmental

dynamics. In addition, 𝑄-learning is off policy, meaning it can learn about optimal

policies while exploring via a non-optimal behavioral distribution, i.e. the distribution

by which the agent explores its environment.

We choose the behavior distribution using an 𝜖-greedy strategy [6]. With this strat-

egy, a random action is taken with probability 𝜖 and the greedy action, max𝑢∈𝒰(𝑠𝑖) 𝑄𝑡(𝑠𝑖, 𝑢),

is chosen with probability 1 − 𝜖. We anneal 𝜖 from 1 → 0 such that the agent begins

in an exploration phase and slowly starts moving towards the exploitation phase. In

addition, when the exploration cost is large (which is true for our problem setting),

it is beneficial to use the experience replay technique for faster convergence [34]. In

21

experience replay, the learning agent is provided with a memory of its past explored

paths and rewards. At a given interval, the agent samples from the memory and

updates its 𝑄-values via Equation 2.5.

22

Chapter 3

Designing Neural Networks Using

𝑄-Learning

The majority of this chapter is presented in Baker et al. [1]; however, we also include

further results and model architecture embedding visualizations. We seek to automate

the process of CNN architecture selection through a meta-modeling procedure based

on reinforcement learning. We construct a novel 𝑄-learning agent whose goal is to

discover CNN architectures that perform well on a given machine learning task with

no human intervention. The learning agent is given the task of sequentially picking

layers of a CNN model. By discretizing and limiting the layer parameters to choose

from, the agent is left with a finite but large space of model architectures to search

from. The agent learns through random exploration and slowly begins to exploit its

findings to select higher performing models using the 𝜖-greedy strategy [6]. The agent

receives the validation accuracy on the given machine learning task as the reward

for selecting an architecture. We expedite the learning process through repeated

memory sampling using experience replay [15]. We refer to this 𝑄-learning based

meta-modeling method as MetaQNN, which is summarized in Figure 3-1.1

We conduct experiments with a space of model architectures consisting of only

standard convolution, pooling, and fully connected layers using three standard image

classification datasets: CIFAR-10, SVHN, and MNIST. The learning agent discovers

1For more information, model files, and code, please visit github.com/bowenbaker/metaqnn

23

https://github.com/bowenbaker/metaqnn

Agent Samples

Network Topology

Agent Learns

From Memory
Train Network

Store in

Replay Memory

R
Q

Sample

Memory
Update

Q-Values

Conv

Conv

Pool

Softmax

Topology:
 C(64,5,1)

 C(128,3,1)

 P(2,2)

 SM(10)

Performance:
 93.3%

R

Figure 3-1: Designing CNN Architectures with 𝑄-learning: The agent begins
by sampling a Convolutional Neural Network (CNN) topology conditioned on a pre-
defined behavior distribution and the agent’s prior experience (left block). That CNN
topology is then trained on a specific task; the topology description and performance,
e.g. validation accuracy, are then stored in the agent’s memory (middle block). Fi-
nally, the agent uses its memories to learn about the space of CNN topologies through
𝑄-learning (right block).

CNN architectures that beat all existing networks designed only with the same layer

types (e.g., [35, 36]). In addition, their performance is competitive against network

designs that include complex layer types and training procedures (e.g., [37, 38]).

Finally, the MetaQNN selected models comfortably outperform previous automated

network design methods [24, 19]. The top network designs discovered by the agent on

one dataset are also competitive when trained on other datasets, indicating that they

are suited for transfer learning tasks. Moreover, we can generate not just one, but

several varied, well-performing network designs, which can be ensembled to further

boost the prediction performance.

3.1 Designing Neural Network Architectures with 𝑄-

learning

We consider the task of training a learning agent to sequentially choose neural net-

work layers. Figure 3-2 shows feasible state and action spaces (a) and a potential

trajectory the agent may take along with the CNN architecture defined by this tra-

jectory (b). We model the layer selection process as a Markov Decision Process with

the assumption that a well-performing layer in one network should also perform well

24

Layer 1 Layer 2

w
11

(1)

w
12

(1)

w
13

(1)

w
21

(1)

w
22

(1)

w
23

(1)

w
31

(1)

w
32

(1)

w
33

(1)

Input

Convolution
64 Filters
3x3 Receptive Field

1x1 Strides

Max Pooling

Softmax

Input

C(64,3,1)

P(2,2)

C(64,3,1)

G

G G

G

P(2,2)

State

Action

Input

C(64,3,1)

P(2,2)

C(64,3,1)

G

G G

G

Layer 1 Layer 2

C(64,3,1) C(64,3,1)

G

G G

G

Layer N-1 Layer N

P(2,2) P(2,2) P(2,2)

(a) (b)

Figure 3-2: Markov Decision Process for CNN Architecture Generation:
Figure 2(a) shows the full state and action space. In this illustration, actions are
shown to be deterministic for clarity, but they are stochastic in experiments. 𝐶(𝑛, 𝑓, 𝑙)
denotes a convolutional layer with 𝑛 filters, receptive field size 𝑓 , and stride 𝑙. 𝑃 (𝑓, 𝑙)
denotes a pooling layer with receptive field size 𝑓 and stride 𝑙. 𝐺 denotes a termination
state (Softmax/Global Average Pooling). Figure 2(b) shows a path the agent may
choose, highlighted in green, and the corresponding CNN topology.

in another network. We make this assumption based on the hierarchical nature of the

feature representations learned by neural networks with many hidden layers [39]. The

agent sequentially selects layers via the 𝜖-greedy strategy until it reaches a termina-

tion state. The CNN architecture defined by the agent’s path is trained on the chosen

learning problem, and the agent is given a reward equal to the validation accuracy.

The validation accuracy and architecture description are stored in a replay memory,

and experiences are sampled periodically from the replay memory to update 𝑄-values

via Equation 2.5. The agent follows an 𝜖 schedule which determines its shift from

exploration to exploitation.

Our method requires three main design choices: (i) reducing CNN layer definitions

to simple state tuples, (ii) defining a set of actions the agent may take, i.e., the set of

layers the agent may pick next given its current state, and (iii) balancing the size of

the state-action space—and correspondingly, the model capacity—with the amount

of exploration needed by the agent to converge. We now describe the design choices

and the learning process in detail.

3.1.1 The State Space

Each state is defined as a tuple of all relevant layer parameters. We allow five different

types of layers: convolution (C), pooling (P), fully connected (FC), global average

25

pooling (GAP), and softmax (SM), though the general method is not limited to

this set. Table 3.1 shows the relevant parameters for each layer type and also the

discretization we chose for each parameter. Each layer has a parameter layer depth

(shown as Layer 1, 2, ... in Figure 3-2). Adding layer depth to the state space allows us

to constrict the action space such that the state-action graph is directed and acyclic

(DAG) and also allows us to specify a maximum number of layers the agent may

select before terminating.

Each layer type also has a parameter called representation size (𝑅-size). Convo-

lutional nets progressively compress the representation of the original signal through

pooling and convolution. The presence of these layers in our state space may lead

the agent on a trajectory where the intermediate signal representation gets reduced

to a size that is too small for further processing. For example, five 2 × 2 pooling

layers each with stride 2 will reduce an image of initial size 32 × 32 to size 1 × 1.

At this stage, further pooling, or convolution with receptive field size greater than 1,

would be meaningless and degenerate. To avoid such scenarios, we add the 𝑅-size

parameter to the state tuple 𝑠, which allows us to restrict actions from states with

𝑅-size 𝑛 to those that have a receptive field size less than or equal to 𝑛. To further

constrict the state space, we chose to bin the representation sizes into three discrete

buckets. However, binning adds uncertainty to the state transitions: depending on

the true underlying representation size, a pooling layer may or may not change the

𝑅-size bin. As a result, the action of pooling can lead to two different states, which

we model as stochasticity in state transitions. Please see Figure 3-3 for an illustrated

example.

3.1.2 The Action Space

We restrict the agent from taking certain actions to both limit the state-action space

and make learning tractable. First, we allow the agent to terminate a path at any

point, i.e. it may choose a termination state from any non-termination state. In

addition, we only allow transitions for a state with layer depth 𝑖 to a state with layer

depth 𝑖 + 1, which ensures that there are no loops in the graph. This constraint

26

P(2,2)

 R-size: 18
R-size bin: 1

 R-size: 9
R-size bin: 1

(a)

P(2,2)

 R-size: 7
R-size bin: 2

 R-size: 14
R-size bin: 1

(b)

States
Actions

p
1 2

p

R-size bin: 1

R-size bin: 1 R-size bin: 2

P(2,2)

(c)

Figure 3-3: Representation size binning: In this figure, we show three example
state transitions. The true representation size (𝑅-size) parameter is included in the
figure to show the true underlying state. Assuming there are two 𝑅-size bins, 𝑅-size
Bin1: [8,∞) and 𝑅-size Bin2: (0, 7], Figure 3-3a shows the case where the initial state
is in 𝑅-size Bin1 and true representation size is 18. After the agent chooses to pool
with a 2 × 2 filter with stride 2, the true representation size reduces to 9 but the
𝑅-size bin does not change. In Figure 3-3b, the same 2 × 2 pooling layer with stride
2 reduces the actual representation size of 14 to 7, but the bin changes to 𝑅-size
Bin2. Therefore, in figures 3-3a and 3-3b, the agent ends up in different final states,
despite originating in the same initial state and choosing the same action. Figure 3-3c
shows that in our state-action space, when the agent takes an action that reduces the
representation size, it will have uncertainty in which state it will transition to.

ensures that the state-action graph is always a DAG. Any state at the maximum

layer depth, as prescribed in Table 3.1, may only transition to a termination layer.

Next, we limit the number of fully connected (FC) layers to be at maximum

two, because a large number of FC layers can lead to too may learnable parameters.

The agent at a state with type FC may transition to another state with type FC if

and only if the number of consecutive FC states is less than the maximum allowed.

Furthermore, a state 𝑠 of type FC with number of neurons 𝑑 may only transition to

either a termination state or a state 𝑠′ of type FC with number of neurons 𝑑′ ≤ 𝑑.

An agent at a state of type convolution (C) may transition to a state with any

other layer type. An agent at a state with layer type pooling (P) may transition

to a state with any other layer type other than another P state because consecutive

pooling layers are equivalent to a single, larger pooling layer which could lie outside of

our chosen state space. Furthermore, only states with representation size in bins (8, 4]

27

Layer Type Layer Parameters Parameter Values

Convolution (C)

𝑖 ∼ Layer depth
𝑓 ∼ Receptive field size
ℓ ∼ Stride
𝑑 ∼ # receptive fields
𝑛 ∼ Representation size

< 12
Square. ∈ {1, 3, 5}
Square. Always equal to 1
∈ {64, 128, 256, 512}
∈ {(∞, 8], (8, 4], (4, 1]}

Pooling (P)
𝑖 ∼ Layer depth
(𝑓, ℓ) ∼ (Receptive field size, Strides)
𝑛 ∼ Representation size

< 12
Square. ∈

{︀
(5, 3), (3, 2), (2, 2)

}︀
∈ {(∞, 8], (8, 4] and (4, 1]}

Fully Connected (FC)
𝑖 ∼ Layer depth
𝑛 ∼ # consecutive FC layers
𝑑 ∼ # neurons

< 12
< 3
∈ {512, 256, 128}

Termination State 𝑠 ∼ Previous State
𝑡 ∼ Type Global Avg. Pooling/Softmax

Table 3.1: Experimental State Space: For each layer type, we list the relevant
parameters and the values each parameter is allowed to take.

and (4, 1] may transition to an FC layer, which ensures that the number of weights

does not become unreasonably huge. Note that a majority of these constraints are in

place to enable faster convergence on our limited hardware (see Section 3.2) and not

a limitation of the method in itself.

3.1.3 𝑄-learning Training Procedure

For the iterative 𝑄-learning updates (Equation 2.5), we set the 𝑄-learning rate (𝛼) to

0.01. In addition, we set the discount factor (𝛾) to 1 to not over-prioritize short-term

rewards. We decrease 𝜖 from 1.0 to 0.1 in steps, where the step-size is defined by the

number of unique models trained (Table 3.2). At 𝜖 = 1.0, the agent samples CNN

architecture with a random walk along a uniformly weighted Markov chain. Every

topology sampled by the agent is trained using the procedure described in Section 3.2,

and the prediction performance of this network topology on the validation set is

recorded. We train a larger number of models at 𝜖 = 1.0 as compared to other values

of 𝜖 to ensure that the agent has adequate time to explore before it begins to exploit.

We stop the agent at 𝜖 = 0.1 (and not at 𝜖 = 0) to obtain a stochastic final policy,

which generates perturbations of the global minimum.2 Ideally, we want to identify

2𝜖 = 0 indicates a completely deterministic policy. Because we would like to generate several
good models for ensembling, we stop at 𝜖 = 0.1, which represents a stochastic final policy.

28

𝜖 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Models Trained 1500 100 100 100 150 150 150 150 150 150

Table 3.2: Experimental 𝜖 Schedule: The learning agent trains the specified num-
ber of unique models at each 𝜖.

several well-performing model topologies, which can then be ensembled to improve

prediction performance.

During the entire training process (starting at 𝜖 = 1.0), we maintain a replay

dictionary which stores (i) the network topology and (ii) prediction performance on

a validation set, for all of the sampled models. If a model that has already been

trained is re-sampled, it is not re-trained, but instead the previously found validation

accuracy is presented to the agent. After each model is sampled and trained, the

agent randomly samples 100 models from the replay dictionary and applies the 𝑄-

value update defined in Equation 2.5 for all transitions in each sampled sequence.

The 𝑄-value update is applied to the transitions in temporally reversed order, which

has been shown to speed up 𝑄-values convergence [15].

3.2 Experiment Details

During the model exploration phase, we trained each network topology with a quick

and aggressive training scheme. For each experiment, we created a validation set by

randomly taking 5,000 samples from the training set such that the resulting class

distributions were unchanged. For every network, a dropout layer was added after

every two layers. The 𝑖𝑡ℎ dropout layer, out of a total 𝑛 dropout layers, had a dropout

probability of 𝑖
2𝑛

. Each model was trained for a total of 20 epochs with the Adam

optimizer [40] with 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8. The batch size was set to 128, and

the initial learning rate was set to 0.001. If the model failed to perform better than a

random predictor after the first epoch, we reduced the learning rate by a factor of 0.4

and restarted training, for a maximum of 5 restarts. For models that started learning

(i.e., performed better than a random predictor), we reduced the learning rate by a

factor of 0.2 every 5 epochs. All weights were initialized with Xavier initialization [41].

29

Our experiments using Caffe [42] took 8-10 days to complete for each dataset with a

hardware setup consisting of 10 NVIDIA GPUs.

After the agent completed the 𝜖 schedule (Table 3.2), we selected the top ten

models that were found over the course of exploration. These models were then

finetuned using a much longer training schedule, and only the top five were used for

ensembling. We now provide details of the datasets and the finetuning process.

The Street View House Numbers (SVHN) dataset has 10 classes with a

total of 73,257 samples in the original training set, 26,032 samples in the test set,

and 531,131 additional samples in the extended training set. During the exploration

phase, we only trained with the original training set, using 5,000 random samples as

validation. We finetuned the top ten models with the original plus extended training

set, by creating preprocessed training and validation sets as described by [38]. Our

final learning rate schedule after tuning on validation set was 0.025 for 5 epochs,

0.0125 for 5 epochs, 0.0001 for 20 epochs, and 0.00001 for 10 epochs.

CIFAR-10, the 10 class tiny image dataset, has 50,000 training samples and

10,000 testing samples. During the exploration phase, we took 5,000 random samples

from the training set for validation. The maximum layer depth was increased to 18.

After the experiment completed, we used the same validation set to tune hyperpa-

rameters, resulting in a final training scheme which we ran on the entire training set.

In the final training scheme, we set a learning rate of 0.025 for 40 epochs, 0.0125 for

40 epochs, 0.0001 for 160 epochs, and 0.00001 for 60 epochs, with all other parameters

unchanged. During this phase, we preprocess using global contrast normalization and

use moderate data augmentation, which consists of random mirroring and random

translation by up to 5 pixels.

MNIST, the 10 class handwritten digits dataset, has 60,000 training samples and

10,000 testing samples. We preprocessed each image with global mean subtraction. In

the final training scheme, we trained each model for 40 epochs and decreased learning

rate every 5 epochs by a factor of 0.2.

30

0 500 1000 1500 2000 2500 3000
Iterations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

A
cc

u
ra

cy

Epsilon = 1.0 .9 .8 .7 .6 .5 .4 .3 .2 .1

SVHN Q-Learning Performance

Average Accuracy Per Epsilon

Rolling Mean Model Accuracy

0 500 1000 1500 2000 2500 3000 3500
Iterations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

A
cc

u
ra

cy

Epsilon = 1.0 .9 .8.7 .6 .5 .4 .3 .2 .1

CIFAR10 Q-Learning Performance

Average Accuracy Per Epsilon

Rolling Mean Model Accuracy

Figure 3-4: 𝑄-Learning Performance: In the plots, the blue line shows a rolling
mean of model accuracy versus iteration, where in each iteration of the algorithm
the agent is sampling a model. Each bar (in light blue) marks the average accuracy
over all models that were sampled during the exploration phase with the labeled 𝜖.
As 𝜖 decreases, the average accuracy goes up, demonstrating that the agent learns to
select better-performing CNN architectures.

3.3 Experimental Results

3.3.1 Model Selection Analysis

From 𝑄-learning principles, we expect the learning agent to improve in its ability

to pick network topologies as 𝜖 reduces and the agent enters the exploitation phase.

In Figure 3-4, we plot the rolling mean of prediction accuracy over 100 models and

the mean accuracy of models sampled at different 𝜖 values, for the CIFAR-10 and

SVHN experiments. The plots show that, while the prediction accuracy remains flat

during the exploration phase (𝜖 = 1) as expected, the agent consistently improves in

its ability to pick better-performing models as 𝜖 reduces from 1 to 0.1. For example,

the mean accuracy of models in the SVHN experiment increases from 52.25% at 𝜖 = 1

to 88.02% at 𝜖 = 0.1. Furthermore, we demonstrate the stability of the 𝑄-learning

procedure with 10 independent runs on a subset of the SVHN dataset in Section

3.4.1 of the Appendix. Additional analysis of 𝑄-learning results can be found in

Section 3.4.2.

The top models selected by the 𝑄-learning agent vary in the number of parameters

but all demonstrate high performance (see Appendix Tables 1-3). For example, the

number of parameters for the top five CIFAR-10 models range from 11.26 million to

31

Method CIFAR-10 SVHN MNIST CIFAR-100
Maxout [45] 9.38 2.47 0.45 38.57
NIN [46] 8.81 2.35 0.47 35.68
FitNet [47] 8.39 2.42 0.51 35.04
HighWay [36] 7.72 - - -
VGGnet [48] 7.25 - - -
All-CNN [35] 7.25 - - 33.71
MetaQNN (ensemble) 7.32 2.06 0.32 -
MetaQNN (top model) 6.92 2.28 0.44 27.14*

Table 3.3: Error Rate Comparison with CNNs that only use convolution, pooling,
and fully connected layers. We report results for CIFAR-10 and CIFAR-100 with
moderate data augmentation and results for MNIST and SVHN without any data
augmentation.

Method CIFAR-10 SVHN MNIST CIFAR-100
DropConnect [49] 9.32 1.94 0.57 -
DSN [50] 8.22 1.92 0.39 34.57
R-CNN [51] 7.72 1.77 0.31 31.75
MetaQNN (ensemble) 7.32 2.06 0.32 -
MetaQNN (top model) 6.92 2.28 0.44 27.14*
Resnet(110) [52] 6.61 - - -
Resnet(1001) [53] 4.62 - - 22.71
ELU [37] 6.55 - - 24.28
Tree+Max-Avg [38] 6.05 1.69 0.31 32.37

Table 3.4: Error Rate Comparison with state-of-the-art methods with complex
layer types. We report results for CIFAR-10 and CIFAR-100 with moderate data
augmentation and results for MNIST and SVHN without any data augmentation.
Please note that this comparison was created in December, 2016 and the benchmarks
have shifted quite a bit since then.

1.10 million, with only a 2.32% decrease in test error. We find design motifs common

to the top hand-crafted network architectures as well. For example, the agent often

chooses a layer of type 𝐶(𝑁, 1, 1) as the first layer in the network. These layers

generate 𝑁 learnable linear transformations of the input data, which is similar in

spirit to preprocessing of input data from RGB to a different color spaces such as

YUV, as found in prior work [43, 44].

3.3.2 Top Model Performances

We compare the prediction performance of the MetaQNN networks discovered by

the 𝑄-learning agent with state-of-the-art methods on three datasets. We report the

32

accuracy of our best model, along with an ensemble of top five models. First, we

compare MetaQNN with six existing architectures that are designed with standard

convolution, pooling, and fully-connected layers alone, similar to our designs. As seen

in Table 3.3, our top model alone, as well as the committee ensemble of five models,

outperforms all similar models. Next, we compare our results with six top networks

overall, which contain complex layer types and design ideas, including generalized

pooling functions, residual connections, and recurrent modules. Our results are com-

petitive with these methods as well (Table 3.4). Finally, our method outperforms

existing automated network design methods. MetaQNN obtains an error of 6.92% as

compared to 21.2% reported by [54] on CIFAR-10; and it obtains an error of 0.32%

as compared to 7.9% reported by [25] on MNIST.

The difference in validation error between the top 10 models for MNIST was very

small, so we also created an ensemble with all 10 models. This ensemble achieved

a test error of 0.28%—which beats the current state-of-the-art on MNIST without

data augmentation.

The best CIFAR-10 model performs 1-2% better than the four next best models,

which is why the ensemble accuracy is lower than the best model’s accuracy. We posit

that the CIFAR-10 MetaQNN did not have adequate exploration time given the larger

state space compared to that of the SVHN experiment, causing it to not find more

models with performance similar to the best model. Furthermore, the coarse training

scheme could have been not as well suited for CIFAR-10 as it was for SVHN, causing

some models to under perform.

3.3.3 Transfer Learning Ability

Network designs such as VGGnet [48] can be adopted to solve a variety of computer

vision problems. To check if the MetaQNN networks provide similar transfer learning

ability, we use the best MetaQNN model on the CIFAR-10 dataset for training other

computer vision tasks. The model performs well (Table 3.5) both when training from

random initializations, and finetuning from existing weights.

33

Dataset CIFAR-100 SVHN MNIST
Training from scratch 27.14 2.48 0.80
Finetuning 34.93 4.00 0.81
State-of-the-art 24.28 [37] 1.69 [38] 0.31 [38]

Table 3.5: Transfer Learning Performance for the top MetaQNN (CIFAR-10)
model trained for other tasks. Finetuning refers to initializing training with the
weights found for the optimal CIFAR-10 model.

3.4 Further Analysis of 𝑄-Learning

Figure 3-4 show that as the agent begins to exploit, it improves in architecture se-

lection. It is also informative to look at the distribution of models chosen at each

𝜖. Figure 3-5 gives further insight into the performance achieved at each 𝜖 for both

experiments.

3.4.1 𝑄-Learning Stability

Because the 𝑄-learning agent explores via a random or semi-random distribution, it is

natural to ask whether the agent can consistently improve architecture performance.

While the success of the three independent experiments described in the main text

allude to stability, here we present further evidence. We conduct 10 independent

runs of the 𝑄-learning procedure on 10% of the SVHN dataset (which corresponds to

∼7,000 training examples). We use a smaller dataset to reduce the computation time

of each independent run to 10GPU-days, as opposed to the 100GPU-days it would

take on the full dataset. As can be seen in Figure 3-6, the 𝑄-learning procedure

with the exploration schedule detailed in Table 3.2 is fairly stable. The standard

deviation at 𝜖 = 1 is notably smaller than at other stages, which we attribute to the

large difference in number of samples at each stage. Furthermore, the best model

found during each run had remarkably similar performance with a mean accuracy

of 88.25% and standard deviation of 0.58%, which shows that each run successfully

found at least one very high performing model. Note that we did not use an extended

training schedule to improve performance in this experiment.
*Results in this column obtained with the top MetaQNN architecture for CIFAR-10, trained from

random initialization with CIFAR-100 data.

34

0.10.20.30.40.50.60.70.80.91.0
Epsilon

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
ea

n
Ac

cu
ra

cy

Q-Learning Stability (Across 10 Runs)

(a)

0.10.20.30.40.50.60.70.80.91.0
Epsilon

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
ea

n
Ac

cu
ra

cy

Q-Learning Individual Runs

(b)

Figure 3-6: MetaQNN Stability: Figure 3-6a shows the mean model accuracy and
standard deviation at each 𝜖 over 10 independent runs of the 𝑄-learning procedure on
10% of the SVHN dataset. Figure 3-6b shows the mean model accuracy at each 𝜖 for
each independent experiment. Despite some variance due to a randomized exploration
strategy, each independent run successfully improves architecture performance.

3.4.2 𝑄-Value Analysis

We now analyze the actual 𝑄-values generated by the agent during the training

process. The learning agent iteratively updates the 𝑄-values of each path during

the 𝜖-greedy exploration. Each 𝑄-value is initialized at 0.5. After the 𝜖-schedule is

complete, we can analyze the final 𝑄-value associated with each path to gain insights

into the layer selection process. In the left column of Figure 3-7, we plot the average

𝑄-value for each layer type at different layer depths (for both SVHN and CIFAR-10)

datasets. Roughly speaking, a higher 𝑄-value associated with a layer type indicates a

higher probability that the agent will pick that layer type. In Figure 3-7, we observe

that, while the average 𝑄-value is higher for convolution and pooling layers at lower

layer depths, the 𝑄-values for fully-connected and termination layers (softmax and

global average pooling) increase as we go deeper into the network. This observation

matches with traditional network designs.

We can also plot the average 𝑄-values associated with different layer parameters

for further analysis. In the right column of Figure 3-7, we plot the average 𝑄-values

for convolution layers with receptive field sizes 1, 3, and 5 at different layer depths.

The plots show that layers with receptive field size of 5 have a higher 𝑄-value as

35

compared to sizes 1 and 3 as we go deeper into the networks. This indicates that it

might be beneficial to use larger receptive field sizes in deeper networks.

In summary, the 𝑄-learning method enables us to perform analysis on the relative

benefits of different design parameters of our state space, and possibly gain insights

for new CNN designs.

3.5 All Models Aren’t Created Equal

MetaQNN has a limitation that was not addressed in our original paper. All models

do not have the same convergence rate, and thus comparing model performances after

20 epochs of training will bias the agent towards specific model depths (number of

layers). Zoph et al. [2] somewhat sidestepped this issue by keeping fixed scaffolds

for their networks, and Real et al. [3] jointly learn the optimization hyperparameters

(including training schedule). Fixing a scaffold requires the user to choose the number

of layers prior to the architecture search, which may be limiting in some cases. Jointly

learning the optimization hyperparameters may be too costly, as it requires training

some configurations for very long durations.

While our method did not have these protections baked in, it turns out the deeper

models 𝑄-learning agent picked were even more competitive the model with top per-

formance at 20 epochs. The top model chosen by our 𝑄-learning agent on the CIFAR-

10 benchmark was a 9-layer model; to see if this model was the best chosen by our

agent, we grouped the models based on number of layers and trained the top model

from each group for the final 300 epoch training schedule. Out of these, the 15-layer

model performed best achieving 94.7% accuracy. The top 9-layer model achieved

84.78% at 20 epochs where the top 15-layer model only reached 81.2%, which demon-

strates the need for a principled way to compare varying depth models. However, this

result makes us more optimistic about using 𝑄-learning for architecture search, as it

was able to generate a simple feed forward architecture with no residual connections

that outperforms everything in Table 3.4 except a 1001-layer residual network. Table

3.6 compares our updated results to two other meta-modeling approaches. Given we

36

Method CIFAR-10 Error # Architectures Complexity Estimate
Sampled (GPU-days)

MetaQNN (ours) 5.3 2,700 100
Neural Architecture Search [2] 3.65 12,800 10,000
Large Scale Evolution [3] 5.4 - 2,600

Table 3.6: Comparison with meta-modeling methods. We report the single
model CIFAR-10 Error with minor data augmentation. We only give rough estimates
of computation time so as to compare the order of magnitude. It is promising that
MetaQNN can outperform Large Scale Evolution with more than an order of magni-
tude less computation and can come within 2% performance of Neural Architecture
Search while using a factor of 100 less computation.

use order of magnitudes less computation than the competing experiments, it is quite

promising that MetaQNN beats Large Scale Evolution [3] and comes within 2% of

Neural Architecture Search [2].

Our sweep over the best varying depth models chosen by the agent gives much

improved results, but it doesn’t admit an immediate algorithm that allows the agent

to automatically deal with this model depth bias. We leave further investigation of

this issue to future work.

3.6 Visualizing The Architecture Space

It is odd that the 𝑄-learning agent is able to learn despite the Markov assumption

made, i.e. only the previous layer chosen is included in the state variable. Includ-

ing variables such as layer depth and representation size in the state may give the

agent enough partial information on the entire model chosen so far to make learning

tractable, but we leave this ablative analysis for future work. Using the dataset of

models sampled over the course of the agent’s training period, we present some very

preliminary findings on the space of architectures and why these simplistic assump-

tions are not detrimental to the architecture search. First, we define the edit distance

between two models as the minimum number of inserts, deletes, and substitutions

required to transform one model into the other. We only consider edits at the layer

level, so substituting a convolutional layer with 3x3 receptive field for a convolutional

layer with 1x1 receptive field is the same edit distance as swapping that convolutional

37

layer with any other layer type. Using this metric, we can create a distance matrix

for the sampled architectures and embed them in a 2-dimensional space using t-SNE

[55]. Figure 3-8 and 3-9 show these 2-dimensional embeddings, where each point is a

a unique architecture, for the CIFAR-10 and SVHN experiments, respectively.

38

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Validation Accuracy

0

10

20

30

40

50

60

%
 M

o
d
e
ls

Model Accuracy Distribution
(SVHN)

epsilon

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Validation Accuracy

0

10

20

30

40

50

60

%
 M

o
d
e
ls

Model Accuracy Distribution
(SVHN)

epsilon

0.1 1.0

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Validation Accuracy

0

5

10

15

20

%
 M

o
d
e
ls

Model Accuracy Distribution
(CIFAR-10)

epsilon

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Validation Accuracy

0

5

10

15

20

%
 M

o
d
e
ls

Model Accuracy Distribution
(CIFAR-10)

epsilon

0.1 1.0

(d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Validation Accuracy

0

20

40

60

80

100

%
 M

od
el

s

Model Accuracy Distribution
(MNIST)

epsilon
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9
1.0

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Validation Accuracy

0

20

40

60

80

100

%
 M

od
el

s

Model Accuracy Distribution
(MNIST)

epsilon
0.1 1.0

(f)

Figure 3-5: Architecture Accuracy Distributions versus 𝜖: Figures 3-5a, 3-5c,
and 3-5e show the accuracy distribution for each 𝜖 for the SVHN, CIFAR-10, and
MNIST experiments, respectively. Figures 3-5b, 3-5d, and 3-5f show the accuracy
distributions for the initial 𝜖 = 1 and the final 𝜖 = 0.1. One can see that the accuracy
distribution becomes much more peaked in the high accuracy ranges at small 𝜖 for
each experiment.

39

0 2 4 6 8 10 12 14
Layer Depth

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 Q
-V

al
ue

Average Q-Value vs. Layer Depth
(SVHN)

Convolution
Fully Connected
Pooling
Global Average Pooling
Softmax

(a)

0 2 4 6 8 10 12
Layer Depth

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 Q
-V

al
ue

Average Q-Value vs. Layer Depth
for Convolution Layers (SVHN)

Receptive Field Size 1
Receptive Field Size 3
Receptive Field Size 5

(b)

0 5 10 15 20
Layer Depth

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 Q
-V

al
ue

Average Q-Value vs. Layer Depth
(CIFAR10)

Convolution
Fully Connected
Pooling
Global Average Pooling
Softmax

(c)

0 2 4 6 8 10 12 14 16 18
Layer Depth

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 Q
-V

al
ue

Average Q-Value vs. Layer Depth
for Convolution Layers (CIFAR10)

Receptive Field Size 1
Receptive Field Size 3
Receptive Field Size 5

(d)

0 2 4 6 8 10 12 14
Layer Depth

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 Q
-V

al
ue

Average Q-Value vs. Layer Depth
(MNIST)

Convolution
Fully Connected
Pooling
Global Average Pooling
Softmax

(e)

0 2 4 6 8 10 12
Layer Depth

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 Q
-V

al
ue

Average Q-Value vs. Layer Depth
for Convolution Layers (MNIST)

Receptive Field Size 1
Receptive Field Size 3
Receptive Field Size 5

(f)

Figure 3-7: 𝑄-Value Statistics: Average 𝑄-Value versus Layer Depth for different
layer types are shown in the left column. Average 𝑄-Value versus Layer Depth for
different receptive field sizes of the convolution layer are shown in the right column.

40

8 6 4 2 0 2 4 6 8 10
8

6

4

2

0

2

4

6

8 CIFAR-10 TSNE (Edit Distance)

0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80

A
cc

u
ra

cy

Figure 3-8: CIFAR-10 Architecture Edit Distance t-SNE

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

10 SVHN TSNE (Edit Distance)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

u
ra

cy

Figure 3-9: SVHN Architecture Edit Distance t-SNE

41

42

Chapter 4

Performance Prediction for Practical

Early Stopping

Some of this chapter is presented in Baker et al. [32]; we also include a superior

algorithm for speeding up Hyperband and further analysis. When sampling many

different model configurations, it is likely that many sub-par configurations will be

explored. Human experts are quite adept at recognizing and terminating subopti-

mal model configurations by inspecting their partially observed learning curves. In

this chapter we seek to emulate this behavior and automatically identify and ter-

minate sub-par model configurations in order to speedup both meta-modeling and

hyperparameter optimization methods for deep neural networks. In Figure 4-1 we

show the potential benefits of automated early termination for deep convolutional

neural networks. Our method parameterizes learning curve trajectories using simple

features derived from model architectures, training hyperparameters, and early time-

series measurements from the learning curve. We demonstrate that a simple, fast,

and accurate sequential regression model (SRM) can be trained to predict the final

validation accuracy of partially observed neural network configurations using a small

training set of fully observed curves. We can use these predictions and empirical

variance estimates to construct a simple early stopping algorithm that can drastically

speedup both meta-modeling and hyperparameter optimization methods.

43

0% 20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
al

id
at

io
n

A
cc

ur
ac

y

All Trajectories

0% 20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Trajectories w/ Early Stopping

Figure 4-1: Early Stopping Example: (Left) 1000 learning curves sampled from
the MetaQNN [1] search space. (Right) We see the same trajectories, many of which
have been terminated by the early stopping algorithm presented in this work.

4.1 Method Overview

We first describe our model for neural network performance prediction, followed by a

method for early termination of under-performing network architectures.

4.1.1 Modeling Learning Curves

Our goal is to model the validation accuracy 𝑣(x, 𝑡) of a neural net configuration

x ∈ 𝒳 ⊂ R𝑑 at epoch 𝑡 ∈ R using noisy observations 𝑦(x, 𝑡) drawn from an IID

distribution. For each configuration x trained for 𝑇 epochs, we record a time-series

𝑦(𝑡) = 𝑦1, 𝑦2, . . . , 𝑦𝑇 of validation accuracies. We train a population of 𝑛 configura-

tions, obtaining a set 𝒮 = {(x1, 𝑦1(𝑡)), (x2, 𝑦2(𝑡)), . . . , (x𝑛, 𝑦𝑛(𝑡))}. Figure 4-2 explic-

itly shows the partially observed learning curves with the target performances. Note

that this problem formulation is very similar to Klein et al. [30].

We propose to use a set of features 𝑢x, derived from the neural net configuration x,

along with a subset of time-series accuracies 𝑦(𝑡)1–𝜏 = (𝑦𝑡)𝑡=1,2,...,𝜏 (where 1 ≤ 𝜏 < 𝑇)

from 𝒮 to train a regression model for estimating 𝑦𝑇 . Our model predicts 𝑦𝑇 of a

neural network configuration using a feature set 𝑥𝑓 = {𝑢x, 𝑦(𝑡)1–𝜏}. We utilize 𝜈-

Support Vector Regression (𝜈-SVR) [56] for training a model for 𝑦𝑇 ; however, we

note that SVR did not perform significantly better than other simple and efficient

models such as kernelized ordinary least squares. We denote this form of model as

44

20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.2

0.4

0.6

0.8

V
al

id
at

io
n

A
cc

ur
ac

y

20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.2

0.4

0.6

0.8

Figure 4-2: Partial Learning Curve Training Data: Here we show the partial
learning curves (bold lines), and the target final accuracy (circles). Using our Se-
quential Regression Models, we would train a separate model for both the training
set shown in the left and right plots.

a sequential regression model (SRM) as we have to train 𝑇 − 1 separate models to

deal with the varying dimensionality of the partial time series. We note that this is

still extremely computationally cheap both in absolute terms and when compared to

competing methods as we will see in Section 4.2.4.

4.1.2 Early Stopping

To speed up hyperparameter optimization and meta-modeling methods, we develop

an algorithm to determine whether to continue training a partially trained model

configuration using our SRM. If we would like to sample 𝑁 total neural network

configurations, we begin by sampling and training 𝑛 ≪ 𝑁 configurations to cre-

ate a training set 𝒮. We then train a model 𝑓(𝑥𝑓) with an SRM to predict 𝑦𝑇 .

Now, given the current best performance observed 𝑦BEST, we would like to terminate

training a new configuration x′ given its partial observed learning curve 𝑦′(𝑡)1–𝜏 if

𝑓(𝑥𝑓
′) = 𝑦𝑇 ≤ 𝑦BEST so as to not waste computational resources exploring a subopti-

mal configuration.

However, in case 𝑓(𝑥𝑓) has poor out-of-sample generalization, we may mistakingly

terminate the optimal configuration. Thus, if we assume that our estimate can be

modeled as a Gaussian perturbation of the true value 𝑦𝑇 ∼ 𝒩 (𝑦𝑇 , 𝜎(x, 𝜏)), then we

can find the probability 𝑝(𝑦𝑇 ≤ 𝑦BEST|𝜎(x, 𝜏)) = Φ(𝑦BEST; 𝑦𝑇 , 𝜎), where Φ(·;𝜇, 𝜎) is

45

the CDF of 𝒩 (𝜇, 𝜎). Note that in general the uncertainty will depend on both the

configuration and 𝜏 , the number of points observed from the learning curve. Because

frequentist models don’t admit a natural estimate of uncertainty, we assume that 𝜎

is independent of x yet still dependent on 𝜏 and estimate it via Leave One Out Cross

Validation. For complete clarity, we train 𝑇 − 1 independent performance predictors,

the 𝜏 th of which only uses the points 𝑦(𝑡)1–𝜏 from the learning curve. This use of

sequential regression models may seem unreasonably expensive; however, in practice

each model is extremely cheap to train and far cheaper to do inference in than the

previous state-of-the-art models, e.g. [29] and [30].

Now that we can estimate the model uncertainty, given a new configuration x′

and an observed learning curve 𝑦′(𝑡)1–𝜏 , we may set our termination criteria to be

𝑝(𝑦𝑇 ≤ 𝑦BEST) ≥ ∆. ∆ balances the trade-off between increased speedups and risk

of prematurely terminating good configurations. In many cases, one may want sev-

eral configurations that are close to optimal, for the purpose of ensembling. We

offer two modifications in this case. First, one may relax the termination criterion

to 𝑝(𝑦𝑇 ≤ 𝑦BEST − 𝛿) ≥ ∆, which will allow configurations within 𝛿 of optimal per-

formance to complete training. One can alternatively set the criterion based on the

𝑛th best configuration observed, guaranteeing that with high probability the top 𝑛

configurations will be fully trained.

Please note, the only difference between this work and the excellent work done by

Domhan et al. [29] is our use of sequential regression models and empirical variance

estimates. The early termination algorithm and use in SMBO is the same, except as

we will see in the next section, our models are much cheaper to train and do inference

in, more accurate, and simpler to implement.

Fast Hyperband

Here we present the algorithm for Fast Hyperband (f-Hyperband), which details ex-

actly our method for early termination for improved performance on the Hyperband

algorithm, which is detailed in Algorithm 1 from Li et al. [22]. Algorithm 1 of this

text replicates Algorithm 1 from [22], except we initialize two dictionaries: 𝐷 to store

46

training data and 𝑀 to store performance prediction models. 𝐷[𝑟] will correspond

to a dictionary containing all datasets with prediction target epoch 𝑟. 𝐷[𝑟][𝜏] will

correspond to the dataset for predicting 𝑦𝑟 based on the observed 𝑦(𝑡)1−𝜏 , and 𝑀 [𝑟][𝜏]

will hold the corresponding performance prediction model. We will assume that the

performance prediction model will have a train function, and a predict function

that will return the prediction and standard deviation of the prediction. In addition

to the standard Hyperband hyperparameters 𝑅 and 𝜂, we include ∆ and 𝛿 described

in Section 4.1.2 and 𝜅. During each iteration of successive halving, we train 𝑛𝑖 con-

figurations to 𝑟𝑖 epochs; 𝜅 denotes the fraction of the top 𝑛𝑖 models that should be

run to the full 𝑟𝑖 iterations. This is similar to setting the criterion based on the 𝑛th

best model in the previous section.

We also detail the run_then_return_validation_loss function in Algorithm 2.

This algorithm runs a set of configurations, adds training data from observed learning

curves, trains the performance prediction models when there is enough training data

present, and then uses the models to terminate poor configurations. It assumes we

have a function max_k, which returns the 𝑘th max value or −∞ if the list has less

than 𝑘 values.

The end goal of this procedure is to find the single best model configuration trained

to 𝑅 epochs. Thus, it makes sense to do global early stopping across successive halving

blocks only for configurations that are being trained to 𝑅 epochs. This essentially

entails remembering the best model seen so far and running the same early stopping

algorithm for other models training to 𝑅 epochs, alleviating the need to train at least

one model to 𝑅 epochs in each iteration of successive halving. This can also be carried

out over successive iterations of Hyperband. All results presented use both of these

modifications.

4.2 Experiments and Results

We now evaluate the performance of our algorithm in three separate settings. First,

we analyze the ability a 𝜈-SVR model to predict the final validation accuracy of a

47

Algorithm 1: f-Hyperband
input : 𝑅 – (Max resources allocated to any configuration)

𝜂 – (default 𝜂 = 3)
∆ – (Probability threshold for early termination)
𝛿 – (Performance offset for early termination)
𝑑 – (# points required to train performance predictors)
𝜅 – (Proportion of models to train)

initialize: 𝐷 = dict()
𝑀 = dict()
𝑠max = ⌊log𝜂(𝑅)⌋
𝐵 = (𝑠max + 1)𝑅

1 for 𝑠 ∈ {𝑠max, . . . , 0} do
2 𝑛 = ⌈𝐵

𝑅
𝜂𝑠

𝑠+1
⌉, 𝑟 = 𝑅𝜂−𝑠

3 // begin SUCCESSIVEHALVING with (𝑛, 𝑟) inner loop
4 𝑇 = get_hyperparameter_configuration(𝑛)
5 for 𝑖 ∈ {0, . . . , 𝑠} do
6 𝑛𝑖 = ⌊𝑛𝜂−𝑖⌋, 𝑟𝑖 = 𝑟𝜂𝑖

7 𝑛next = ⌊𝑛𝑖

𝜂
⌋ if 𝑖! = 𝑠 else 1

8 𝐿 = run_then_return_validation_loss(𝑇, 𝑟𝑖, 𝑛next, 𝐷,𝑀)
9 𝑇 = top_k(𝑇, 𝐿, ⌊𝑛𝑖

𝜂
⌋)

10 end
11 end

48

Algorithm 2: run_then_return_validation_loss
input : 𝑇 – hyperparameter configurations

𝑟 – resources to use for training
𝑛 – # configurations in next iteration of successive halving
𝐷 – dictionary storing training data
𝑀 – dictionary storing performance prediction models

initialize: 𝐿 = []
1 for 𝑡 ∈ 𝑇 do
2 ℓ = []
3 for 𝑖 ∈ {0, . . . , 𝑟 − 1} do
4 ℓ𝑖 = run_one_epoch_return_validation_loss(𝑡)
5 ℓ.append(ℓ𝑖)
6 if 𝑀 [𝑟][𝑖].trained() then
7 𝑦𝑟, 𝜎 = 𝑀 [𝑟][𝑖].predict(ℓ)
8 if Φ(max_k(𝐿, 𝜅𝑛)− 𝛿; 𝑦𝑟, 𝜎) ≥ ∆ then
9 𝐿.append(𝑦𝑟)

10 break
11 end
12 end
13 else if 𝑖 == 𝑟 − 1 then
14 𝐿.append(ℓ𝑖)
15 end
16 end
17 if length(𝐷[𝑟][0]) < 𝑑 and length(ℓ) == 𝑟 then
18 {𝐷[𝑟][𝑖].append({ℓ[0, . . . , 𝑖], ℓ[𝑟]}): 𝑖 ∈ {0, . . . , 𝑟 − 1}}
19 if not𝑀 [𝑟][𝑖].trained() then
20 𝑀 [𝑟][𝑖].train(𝐷[𝑟][𝑖])
21 end
22 end
23 end
24 return 𝐿

49

trained neural network. Second, we integrate the SRM-based early stopping model

into MetaQNN [1] to show that it can speed up the meta-modeling process without

perturbing the reward function to the point that the agent learns suboptimal policies.

Finally, we characterize the acceleration achieved by f-Hyperband over the vanilla

Hyperband algorithm. We first describe the process we use to train our performance

prediction model.

For all experiments, we train the 𝜈-SVR model with random search over 1000

hyperparameter configurations from the space 𝐶 ∼ LogUniform(10−5, 10), 𝜈 ∼

Uniform(0, 1), and 𝛾 ∼ LogUniform(10−5, 10) (when using the RBF kernel). We

use a combination of features to train the SVR. For all experiments described in

this chapter, we use the following time-series features: (i) the validation accuracies

𝑦′(𝑡)1–𝜏 = (𝑦𝑡)𝑡=1,2,...,𝜏 (where 1 ≤ 𝜏 < 𝑇), (ii) the first-order differences of validation

accuracies (i.e., 𝑦𝑡′ = (𝑦𝑡 − 𝑦𝑡−1)), and (iii) the second-order differences of validation

accuracies (i.e., 𝑦𝑡
′′ = (𝑦𝑡

′ − 𝑦𝑡−1)
′). For experiments in which we vary the CNN

architectures (MetaQNN CNNs and Deep Resnet), we include the total number of

weights, number of layers, and learning rate into the feature space. For experiments

in which we vary the optimization hyperparameters (Cuda-Convnet and AlexNet),

we include all hyperparameters for training the neural networks as features.

4.2.1 Datasets and Training Procedures

We now describe the datasets and training procedures used in our experiments. We

generate learning curves from randomly sampled models in four different hyperparam-

eter search spaces. We experiment with standard datasets on both small convolutional

networks and very deep convolutional architectures.

MetaQNN CNNs: We sample 1,000 model architectures from the search space

detailed by Baker et al. [1], which allows for varying the numbers and orderings

of convolution, pooling, and fully connected layers. We experiment with both the

SVHN and CIFAR-10 datasets and use the same preprocessing and optimization

hyperparameters.

Cuda-Convnet: We also experiment with the Cuda-Convnet architecture [57].

50

We vary initial learning rate, learning rate reduction step size, weight decay for convo-

lutional and fully connected layers and scale and power of local response normalization

layers. We experiment with both the CIFAR-10 and SVHN datasets. CIFAR-10 mod-

els are trained for 60 epochs and SVHN models are trained for 12 epochs. A total

of 8489 and 16582 configurations were randomly sampled for CIFAR-10 and SVHN

respectively.

AlexNet: We train the AlexNet [4] model on the ILSVRC12 dataset. It was

considerably more expensive to train many configurations on ILSVRC12 because of

larger image and dataset size. To compensate for our limited computation resources,

we randomly sample 10% of dataset, trained each configuration for 10 epochs, and

only vary learning rate and learning rate reduction. We sampled and trained 1,376

hyperparameter configurations.

Deep Resnet: We sample 500 ResNet [52] architectures from a search space sim-

ilar to Zoph et al. [2]. Each architecture consists of 39 layers: 12 conv, a 2x2 max pool,

9 conv, a 2x2 max pool, 15 conv, and softmax. Each conv layer is followed by batch

normalization and a ReLU nonlinearity. Each block of 3 conv layers are densely con-

nected via residual connections and also share the same kernel width, kernel height,

and number of learnable kernels. Kernel height and width are independently sam-

pled from {1, 3, 5, 7} and number of kernels is sampled from {6, 12, 24, 36}. Finally,

we randomly sample residual connections between each block of conv layers. Each

network is trained for 50 epochs using the RMSProp optimizer, with weight decay

10−4, initial learning rate 0.001, and a learning rate reduction to 10−5 at epoch 30 on

the CIFAR-10 dataset.

4.2.2 Prediction Performance

We now evaluate the ability of 𝜈-SVR, trained with linear and RBF kernels, to predict

the final performance of partially trained neural networks. We compare against the

Bayesian Neural Network (BNN) presented by Klein et al. [30] using a Hamiltonian

Monte Carlo sampler. When training the BNN, we not only present it with the subset

of fully observed learning curves but also all other partially observed learning curves

51

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0
R

2
MetaQNN CNNs ­ CIFAR10

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0 MetaQNN CNNs ­ SVHN

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0 Deep Resnets ­ CIFAR10

0% 20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Cuda Convnet ­ CIFAR10

0% 20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.0

0.2

0.4

0.6

0.8

1.0 Cuda Convnet ­ SVHN

0% 20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.0

0.2

0.4

0.6

0.8

1.0 AlexNet ­ ImageNet

SVR ­ Linear SVR ­ RBF BNN LastSeenValue LCE

Figure 4-3: Performance Prediction Results: We plot the performance of each
method versus the percent of learning curve observed. For BNN and 𝜈-SVR (linear
and RBF), we sample 10 different training sets, plot the mean 𝑅2, and shade the
corresponding standard error. The top row shows results on problems varying the
CNN architecture, and the bottom row shows results on problems varying optimiza-
tion hyperparameters. We compare our method against BNN [30], LCE [29], and a
“last seen value” heuristic [22]. Absent results for a model indicate that it did not
achieve a positive 𝑅2.

from the training set. While we do not present the partially observed curves to the

𝜈-SVR model for training, we felt this was a fair comparison as 𝜈-SVR uses the entire

partially observed learning curve during inference. Furthermore, we compare against

the learning curve extrapolation (LCE) method introduced by Domhan et al. [29] and

the last seen value (LastSeenValue) heuristic [22], both of which don’t incorporate

prior learning curves during training. For all experiments, we obtain a training set of

100 neural net configurations randomly sampled from a dataset. We obtain the best

performing 𝜈-SVR using random hyperparameter search over 3-fold cross-validation

on this training set. We then compute the regression performance over the remaining

points in the dataset. We repeat this experiment 10 times and report the results with

standard errors in Figure 4-3. We also compare the performance versus the number

of training samples (i.e. the number of observed learning curves) in Figure B-1.

Figure 4-3 shows the Coefficient of Determination (𝑅2) obtained by each method

52

Feature Set MetaQNN CIFAR-10 (𝑅2) Cuda-Convnet CIFAR10 (𝑅2)
TS 0.9656 0.9680
TS + AP 0.9703 –
TS + AP + HP 0.9704 0.9473
TS + AP + HP + BoW 0.9625 –

Table 4.1: Ablation Analysis for Feature Importance in Prediction Performance: time-
series data (TS) refers to the partially observed learning curves, architecture param-
eters (AP) refer to the number of layers and number of weights in a deep model,
hyperparameters (HP) refer to the optimization parameters such as learning rate,
and Bag-of-Words (BOW) refers counts of each layer type in a deep CNN. We use
TS + AP + HP in all other experiments described in the chapter.

for predicting the final performance versus the percent of the learning curve used for

training the model. We see that in all neural network configuration spaces and across

all datasets, both 𝜈-SVR models drastically outperform the competing methods. In

fact, 𝜈-SVR achieves 𝑅2 > 0.8 on three out of six experiments with only 10% of the

learning curve observed. For deeper models (Resnets and Alexnet), 𝜈-SVR obtains

𝑅2 > 0.6 after observing only 40% of the learning curve. In comparison, we find that

the LastSeenValue heuristic only becomes viable when the models are near conver-

gence, and its performance is much worse than 𝜈-SVR for very deep models. We also

find that the LCE model does poorly at the prediction task in all experiments. BNN

also has relatively mediocre performance, but tends to do better than LastSeenValue

and LCE when only a few iterations have been observed.

To further demonstrate the remarkable fit obtained by the 𝜈-SVR model, we

show the predicted versus true values of final validation accuracy for the MetaQNN,

Cuda-Convnet, and Resnet search spaces on the CIFAR-10 dataset in Figure 4-4.

Each plot is generated using 𝜈-SVR with a Gaussian kernel, using 25% the learning

curve as training data, along with the features obtained from the architecture, and

hyperparameters. We also compared RBF kernel ordinary least squares and found it

to perform almost as well as 𝜈-SVR, further demonstrating the advantage of simple

regression models over Bayesian methods for this task. Finally, we analyze which

features in our model are the most informative in Table 4.1.

53

0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Performance

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

di
ct

ed
 P

er
fo

rm
an

ce R 2 = 0. 970

MetaQNN CNNs ­ CIFAR10

0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80

True Performance

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

R 2 = 0. 494

Deep Resnets ­ CIFAR10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Performance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R 2 = 0. 948

Cuda Convnet ­ CIFAR10

Figure 4-4: Predicted vs True Values of Final Performance: We show the
shape of the predictive distribution for three network configuration datasets trained
on CIFAR-10. Each 𝜈-SVR model is trained with 100 configurations with data from
25% of the learning curve.

4.2.3 Early Stopping for Meta-modeling

We now detail the performance of 𝜈-SVR in speeding up architecture search using

sequential configuration selection. First, we take 1,000 random models from the

MetaQNN [1] search space. We simulate the MetaQNN algorithm by taking 10 ran-

dom orderings of each set and running the algorithms presented in Section 4.1.2. We

compare against the early stopping algorithm proposed by Domhan et al. [29] as a

baseline, which has a similar probability threshold termination criterion. The 𝜈-SVR

model trains off of the first 100 fully observed curves, while the LCE model trains

from each individual partial curve and can begin early termination immediately. De-

spite this “burn in” time needed by the 𝜈-SVR model, it is still able to outperform

the LCE model quite drastically, as can be seen in Figure 4-5. The plotted results

are only in terms of training the CNNs; however, in our experience it takes anywhere

from 1 to 3 minutes to fit the LCE model to a learning curve on a modern CPU due

to expensive MCMC sampling. Additionally, each time a new point on the learning

curve is observed, a new LCE model must be fit. Thus, for an experiment on the

order of that of [1, 2], many days of computation time would be added as overhead

to fit the LCE models when compared to our simple model.

We furthermore simulate early stopping for the deep resnets search space. In our

experiment we found that only the probability threshold ∆ = 0.99 resulted in recov-

54

0.80 0.85 0.90 0.95 1.00
Probability Threshold (∆)

2

3

4

5

6

S
im

ul
at

ed
 S

pe
ed

up

MetaQNN ­ CIFAR10

0.80 0.85 0.90 0.95 1.00
Probability Threshold (∆)

1.5

2.0

2.5

3.0

3.5

MetaQNN ­ SVHN

SVR
SVR Top 10
SVR δ= 0. 01

LCE

Figure 4-5: Simulated Speedup in MetaQNN Search Space: We compare the
three variants of the early stopping algorithm presented in Section 4.1.2. Each 𝜈-SVR
model is trained using the first 100 learning curves, and each algorithm is tested on 10
independent orderings of the model configurations. Triangles indicate an algorithm
that successfully recovered the optimal model for more than half of the 10 orderings,
and X’s indicate those that did not.

ering the top model consistently. However, even with such a conservative threshold,

the search was sped up by a factor of 3.4 over the baseline. While we do not have

the computational resources—even with this speedup—to run the full experiment

from Zoph et al. [2], we believe that this is a promising result for future large scale

architecture searches.

It is not enough, however, to simply simulate the speedup because sequential

configuration selection algorithms typically use the observed performance in order

to update some type of acquisition function. In the reinforcement learning setting,

the performance is given to the agent as a reward, so we also empirically verify that

substituting 𝑦𝑇 for 𝑦𝑇 does not cause the MetaQNN agent to converge to sub-par

policies. We replicate the MetaQNN experiment on the CIFAR-10 dataset (Figure

4-6). We find that integrating early stopping with the Q-learning procedure does not

disrupt learning and resulted in a speedup of 3.8x; note that for this experiment we

set ∆ = 0.99 which explains why the speedup is relatively low. After training the top

models to 300 epochs, we also find that the resulting performance is on par with the

originally published numbers without early stopping (just under 93%).

55

0 500 1000 1500 2000 2500 3000 3500
Iterations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

A
cc

u
ra

cy

Epsilon = 1.0 .9 .8 .7 .6 .5 .4 .3 .2 .1

CIFAR-10 Early Stopping Performance
Average Accuracy Per Epsilon

Rolling Mean Model Accuracy

Cumulative Maximum

Cumulative Maximum (Mean top 15)

Cumulative Maximum (Mean top 5)

Figure 4-6: MetaQNN on CIFAR-10 with Early Stopping: A full run of the
MetaQNN algorithm [1] on the CIFAR-10 dataset with early stopping. We use the
𝜈-SVR model with a probability threshold ∆ = 0.99. Light blue bars indicate the
average model accuracy per decrease in 𝜖, which represents the shift to a more greedy
policy. We also plot the cumulative best, top 5, and top 15 to show that the agent
continues to find better architectures.

4.2.4 Early Stopping for Hyperparameter Optimization

For our final empirical test, we turn towards the task of searching over optimization

hyperparameters, such as learning rate, regularization weight, etc. In this section

we present results on the Hyperband algorithm [22]. Within each block of successive

halving, we found that discarding model configurations based on predicted final per-

formance led to degraded performance due to noise in the predictions. Accordingly,

we predict the final accuracy within each block, i.e. if in the current block of successive

halving we are training each model in the population to 𝑟 iterations, then we train

models to predict 𝑦𝑟 instead of 𝑦𝑇 . Not only does this reduce the variance of our

predictions, but it also allows us to begin early stopping within initial blocks of suc-

cessive halving sooner. Figure 4-7 shows that our early stopping algorithm evaluates

the same number of unique configurations as Hyperband 2 to 3.5 times faster, while

often coming within standard error of the vanilla Hyperband performance. For all

56

0.80 0.85 0.90 0.95
Probability Threshold ()

2.00

2.25

2.50

2.75

3.00

3.25
S

im
ul

at
ed

 S
pe

ed
up

Cifar­10 Hyperband

0.80 0.85 0.90 0.95
Probability Threshold ()

2.0

2.5

3.0

SVHN Hyperband

Top 100% Top 50% Top 10% Top 1 Top 1 =0.01

Figure 4-7: Simulated Speedup on Hyperband with Earlier Stopping: Both
experiments show hyperparameter search over the optimization parameters of Cuda-
Convnet. We repeat each experiment 10 times and plot the mean and standard
error. Triangles indicate an algorithm that recovered a model within standard error
of Hyperband without early stopping, and X’s indicate those that did not. Note that
the standard error for these problems is less than 0.1% on the validation set. Top
𝑋% indicate algorithms that try to recover the top 𝑋% of where 𝑋 is the number of
models considered in the next block of successive halving.

results, we make sure that the configuration sampling seeds are kept the same.

Figure 4-8 shows the max validation performance versus total amount of compu-

tation used over 40 consecutive Hyperband runs. Because in the early Hyperbands

we do not yet have enough training data to create the performance predictors, we

plot the speedup over vanilla Hyperband as a function of the number of Hyperbands

run in Figure 4-9.

Training and Inference Speed

We have empirically shown the power of sequential regression models (SRM). How-

ever, it is also a concern how efficient SRMs are to train and do inference in as they

must be run in parallel with a meta-modeling procedure. Empirically we found 𝑛𝑢-

SVR to take around 0.006s to train on 100 datapoints on a single core of an Intel

6700k CPU, and around 5 × 10−5s to do inference. Even if we measure the perfor-

mance of each configuration 1,000 times, it would only take 20 minutes to do a 1,000

hyperparameter random search for each of the 1,000 regression models on a modern

57

0 50000 100000150000200000250000300000
Total SGD Iterations

0.790

0.795

0.800

0.805

0.810

C
um

ul
at

iv
e

M
ax

im
um

V
al

id
at

io
n

A
cc

ur
ac

y
Cifar­10 Hyperband

Best Performance vs Total Iterations

0 100000 200000 300000 400000 500000
Total SGD Iterations

0.946

0.948

0.950

0.952

0.954

0.956

SVHN Hyperband
Best Performance vs Total Iterations

Vanilla Top 100% Top 50% Top 10% Top 1 Top 1 = 0.01

Figure 4-8: Simulated Max Accuracy vs SGD Iterations for Hyperband: We
show the trajectories of the maximum performance so far versus total computational
resources used for 40 consecutive Hyperband runs with 𝜂 = 3.0 and ∆ = 0.95. As
can be seen in the CIFAR-10 experiment (left), our method remains above the vanilla
Hyperband curve at all iterations, and less aggressive settings for 𝜅 converge to the
same or better final accuracy. Each triangle marks the completion of full Hyperband
algorithm.

0 10 20 30 40
Hyperband Iteration

2

4

6

8

S
im

ul
at

ed
 S

pe
ed

up

Cifar­10 Hyperband
Speedup vs Hyperband Iteration

0 10 20 30 40
Hyperband Iteration

2

4

6

8

SVHN Hyperband
Speedup vs Hyperband Iteration

Top 100% Top 50% Top 10% Top 1 Top 1 =0.01

Figure 4-9: Simulated Speedup on Hyperband vs Hyperband Iteration: We
show the speedup using the f-Hyperband algorithm over vanilla Hyperband on 40
consecutive Hyperband runs with 𝜂 = 3.0 and ∆ = 0.95. The major jump in speedup
comes at iteration 10, where we have trained more than 100 models to the full 𝑅
iterations.

58

8 core CPU. In comparison, the open source code from Domhan et al. [29]* takes 60s

on the same CPU for each inference, which will need to do each time we query the

model on whether to terminate training for early stopping. Of course, for training

deep networks on GPUs, these inferences can happen in parallel. Even in this case,

the method from [29] would waste around 8.8 GPU-Days on an experiment the scale

of that of Zoph et al. [2], whereas our method would waste less than GPU-Second.

*Code found at https://github.com/automl/pylearningcurvepredictor

59

60

Chapter 5

Conclusion and Future Directions

Neural networks are being used in an increasingly wide variety of domains, which

calls for scalable solutions to produce problem-specific model architectures. We take

a step towards this goal and show that a meta-modeling approach using reinforcement

learning is able to generate tailored CNN designs for different image classification

tasks. We introduced a reinforcement learning based approach to architecture search,

MetaQNN, which generates networks networks outperform hand-crafted networks

which use the same types of layers.

Despite the success of this and other architecture search methods, they are all

prohibitively expensive except for small scale problems, e.g. CIFAR-10, or for insti-

tutions with inordinate amounts of computational resources. In an effort to bring

the cost down, we introduce a simple, fast, and accurate model for predicting future

neural network performance using features derived from network architectures, hy-

perparameters, and time-series performance data. Using our simple algorithm, we

can speedup hyperparameter search techniques with complex acquisition functions,

such as a Q-learning agent, by a factor of 3-6x and Hyperband—a state-of-the-art

hyperparameter search method—by a factor of 2-3x, without disturbing the search

procedure.

Future Directions: While we report results for image classification problems,

our method could be applied to different problem settings, including supervised (e.g.,

classification, regression) and unsupervised (e.g., autoencoders). The MetaQNN

61

method could also aid constraint-based network design, by optimizing parameters

such as size, speed, and accuracy. For instance, one could add a threshold in the

state-action space barring the agent from creating models larger than the desired

limit. In addition, one could modify the reward function to penalize large models for

constraining memory or penalize slow forward passes to incentivize quick inference.

This will become increasingly important as more and more mobile and embedded

system applications require fast light-weight architectures.

Section 3.5 presents the issue of intersecting training curves. There is currently no

solution other than to restrict the search to a class of models that should have similar

learning rates, or to jointly learn the training schedule and the architecture. Both

have their limitations; the first being that the deep learning engineer must create a

more constrained search space, and the latter incurring higher computational cost to

search through fewer architectures.

Finally, we saw the power of using sequential regression models over Bayesian

mixture models with handcrafted basis functions. However, the models explored in

this thesis do not admit a natural estimate of uncertainty, which forces us to use

empirical variance estimates that are independent of the learning curve in question.

We leave it to further work to explore models that do not sacrifice performance to

obtain these estimates.

In conclusion, this thesis has explored a new frontier in hyperparameter opti-

mization: large scale architecture search. We first show that tabular 𝑄-learning can

effectively learn to produce neural architectures, and then show that simple sequen-

tial regression models can be used to do state-of-the-art performance prediction and

early stopping. We just scratched the surface in making architecture search practical,

and we believe that this space has a bright future for alleviating the arduous task of

architecture design that has until now be manual.

62

Appendix A

Tables

A.0.1 Top Model Architectures

In Tables A.1 through A.3, we present the top five model architectures selected with

Q-learning for each dataset, along with their prediction error reported on the test set,

and their total number of parameters. To download the Caffe solver and prototext

files, please visit https://bowenbaker.github.io/metaqnn/ .

Model Architecture Test Error (%) # Params (106)
[C(512,5,1), C(256,3,1), C(256,5,1), C(256,3,1),
P(5,3), C(512,3,1), C(512,5,1), P(2,2), SM(10)]

6.92 11.18

[C(128,1,1), C(512,3,1), C(64,1,1), C(128,3,1), P(2,2),
C(256,3,1), P(2,2), C(512,3,1), P(3,2), SM(10)]

8.78 2.17

[C(128,3,1), C(128,1,1), C(512,5,1), P(2,2),
C(128,3,1), P(2,2), C(64,3,1), C(64,5,1), SM(10)]

8.88 2.42

[C(256,3,1), C(256,3,1), P(5,3), C(256,1,1),
C(128,3,1), P(2,2), C(128,3,1), SM(10)]

9.24 1.10

[C(128,5,1), C(512,3,1), P(2,2), C(128,1,1),
C(128,5,1), P(3,2), C(512,3,1), SM(10)]

11.63 1.66

Table A.1: Top 5 model architectures: CIFAR-10.

63

https://bowenbaker.github.io/metaqnn/

Model Architecture Test Error (%) # Params (106)
[C(128,3,1), P(2,2), C(64,5,1), C(512,5,1), C(256,3,1),
C(512,3,1), P(2,2), C(512,3,1), C(256,5,1), C(256,3,1),
C(128,5,1), C(64,3,1), SM(10)]

2.24 9.81

[C(128,1,1), C(256,5,1), C(128,5,1), P(2,2),
C(256,5,1), C(256,1,1), C(256,3,1), C(256,3,1),
C(256,5,1), C(512,5,1), C(256,3,1), C(128,3,1),
SM(10)]

2.28 10.38

[C(128,5,1), C(128,3,1), C(64,5,1), P(5,3), C(128,3,1),
C(512,5,1), C(256,5,1), C(128,5,1), C(128,5,1),
C(128,3,1), SM(10)]

2.32 6.83

[C(128,1,1), C(256,5,1), C(128,5,1), C(256,3,1),
C(256,5,1), P(2,2), C(128,1,1), C(512,3,1), C(256,5,1),
P(2,2), C(64,5,1), C(64,1,1), SM(10)]

2.35 6.99

[C(128,1,1), C(256,5,1), C(128,5,1), C(256,5,1),
C(256,5,1), C(256,1,1), P(3,2), C(128,1,1), C(256,5,1),
C(512,5,1), C(256,3,1), C(128,3,1), SM(10)]

2.36 10.05

Table A.2: Top 5 model architectures: SVHN. Note that we do not report the best
accuracy on test set from the above models in Tables 3.3 and 3.4 from the main text.
This is because the model that achieved 2.28% on the test set performed the best on
the validation set.

64

Model Architecture Test Error (%) # Params (106)
[C(64,1,1), C(256,3,1), P(2,2), C(512,3,1), C(256,1,1),
P(5,3), C(256,3,1), C(512,3,1), FC(512), SM(10)]

0.35 5.59

[C(128,3,1), C(64,1,1), C(64,3,1), C(64,5,1), P(2,2),
C(128,3,1), P(3,2), C(512,3,1), FC(512), FC(128),
SM(10)]

0.38 7.43

[C(512,1,1), C(128,3,1), C(128,5,1), C(64,1,1),
C(256,5,1), C(64,1,1), P(5,3), C(512,1,1), C(512,3,1),
C(256,3,1), C(256,5,1), C(256,5,1), SM(10)]

0.40 8.28

[C(64,3,1), C(128,3,1), C(512,1,1), C(256,1,1),
C(256,5,1), C(128,3,1), P(5,3), C(512,1,1), C(512,3,1),
C(128,5,1), SM(10)]

0.41 6.27

[C(64,3,1), C(128,1,1), P(2,2), C(256,3,1), C(128,5,1),
C(64,1,1), C(512,5,1), C(128,5,1), C(64,1,1),
C(512,5,1), C(256,5,1), C(64,5,1), SM(10)]

0.43 8.10

[C(64,1,1), C(256,5,1), C(256,5,1), C(512,1,1),
C(64,3,1), P(5,3), C(256,5,1), C(256,5,1), C(512,5,1),
C(64,1,1), C(128,5,1), C(512,5,1), SM(10)]

0.44 9.67

[C(128,3,1), C(512,3,1), P(2,2), C(256,3,1),
C(128,5,1), C(64,1,1), C(64,5,1), C(512,5,1),
GAP(10), SM(10)]

0.44 3.52

[C(256,3,1), C(256,5,1), C(512,3,1), C(256,5,1),
C(512,1,1), P(5,3), C(256,3,1), C(64,3,1), C(256,5,1),
C(512,3,1), C(128,5,1), C(512,5,1), SM(10)]

0.46 12.42

[C(512,5,1), C(128,5,1), C(128,5,1), C(128,3,1),
C(256,3,1), C(512,5,1), C(256,3,1), C(128,3,1),
SM(10)]

0.55 7.25

[C(64,5,1), C(512,5,1), P(3,2), C(256,5,1), C(256,3,1),
C(256,3,1), C(128,1,1), C(256,3,1), C(256,5,1),
C(64,1,1), C(256,3,1), C(64,3,1), SM(10)]

0.56 7.55

Table A.3: Top 10 model architectures: MNIST. We report the top 10 models for
MNIST because we included all 10 in our final ensemble. Note that we do not report
the best accuracy on test set from the above models in Tables 3.3 and 3.4 from the
main text. This is because the model that achieved 0.44% on the test set performed
the best on the validation set.

65

66

Appendix B

Figures

67

20 40 60 80 100
Number Fully Observed Curves

0.0

0.2

0.4

0.6

0.8

1.0

R
2

MetaQNN CNNs ­ CIFAR10

20 40 60 80 100
Number Fully Observed Curves

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Cuda Convnet ­ CIFAR10

20 40 60 80 100
Number Fully Observed Curves

0.0

0.2

0.4

0.6

0.8

1.0

R
2

MetaQNN CNNs ­ SVHN

20 40 60 80 100
Number Fully Observed Curves

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Cuda Convnet ­ SVHN

20 40 60 80 100
Number Fully Observed Curves

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Deep Resnets ­ CIFAR10

20 40 60 80 100
Number Fully Observed Curves

0.0

0.2

0.4

0.6

0.8

1.0

R
2

AlexNet ­ ImageNet

SVR ­ Linear SVR ­ RBF BNN LastSeenValue LCE

Figure B-1: Performance Prediction Results Versus Training Set Size: We
plot the performance of each method versus the number of full learning curves ob-
served where 25% of the learning curve is observed. For BNN and 𝜈-SVR (linear and
RBF), we sample 10 different training sets, plot the mean 𝑅2, and shade the corre-
sponding standard error. The left column shows results on problems varying the CNN
architecture, and the right column shows results on problems varying optimization
hyperparameters. We compare our method against BNN [30], LCE [29], and a “last
seen value” heuristic [22]. Absent results for a model indicate that it did not achieve
a positive 𝑅2.

68

Bibliography

[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural
network architectures using reinforcement learning. International Conference on
Learning Representations, 2017.

[2] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. International Conference on Learning Representations, 2017.

[3] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers.
arXiv preprint arXiv:1703.01041, 2017.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. NIPS, pages 1097–1105, 2012.

[5] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition. IEEE
Transactions on audio, speech, and language processing, 20(1):30–42, 2012.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[7] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. CVPR, pages 1–9, 2015.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[9] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD
thesis, University of Cambridge, England, 1989.

[10] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

69

[11] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[12] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. JMLR, 17(39):1–40, 2016.

[13] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[14] Joannes Vermorel and Mehryar Mohri. Multi-armed bandit algorithms and em-
pirical evaluation. European Conference on Machine Learning, pages 437–448,
2005.

[15] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical
report, DTIC Document, 1993.

[16] Sander Adam, Lucian Busoniu, and Robert Babuska. Experience replay for real-
time reinforcement learning control. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(2):201–212, 2012.

[17] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In International Conference on
Learning and Intelligent Optimization, pages 507–523. Springer, 2011.

[18] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. NIPS, pages 2951–2959, 2012.

[19] James Bergstra, Daniel Yamins, and David D Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision ar-
chitectures. ICML (1), 28:115–123, 2013.

[20] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,
Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable
bayesian optimization using deep neural networks. In International Conference
on Machine Learning, pages 2171–2180, 2015.

[21] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. JMLR, 13(Feb):281–305, 2012.

[22] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter opti-
mization. International Conference on Learning Representations, 2017.

[23] J David Schaffer, Darrell Whitley, and Larry J Eshelman. Combinations of ge-
netic algorithms and neural networks: A survey of the state of the art. Interna-
tional Workshop on Combinations of Genetic Algorithms and Neural Networks,
pages 1–37, 1992.

70

[24] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002.

[25] Phillip Verbancsics and Josh Harguess. Generative neuroevolution for deep learn-
ing. arXiv preprint arXiv:1312.5355, 2013.

[26] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic pro-
gramming approach to designing convolutional neural network architectures.
arXiv preprint arXiv:1704.00764, 2017.

[27] Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In Advances
in Neural Information Processing Systems 29, pages 4053–4061. 2016.

[28] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Fre-
itas. Taking the human out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148–175, 2016.

[29] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up au-
tomatic hyperparameter optimization of deep neural networks by extrapolation
of learning curves. IJCAI, 2015.

[30] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learn-
ing curve prediction with bayesian neural networks. International Conference on
Learning Representations, 17, 2017.

[31] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian
optimization. arXiv preprint arXiv:1406.3896, 2014.

[32] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Practical
neural network performance prediction for early stopping. arXiv preprint
arXiv:1705.10823, 2017.

[33] Dimitri P Bertsekas. Convex optimization algorithms. Athena Scientific Belmont,
2015.

[34] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8(3-4):293–321, 1992.

[35] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806, 2014.

[36] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway net-
works. arXiv preprint arXiv:1505.00387, 2015.

[37] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (ELUs). arXiv preprint
arXiv:1511.07289, 2015.

71

[38] Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling
functions in convolutional neural networks: Mixed, gated, and tree. International
Conference on Artificial Intelligence and Statistics, 2016.

[39] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[40] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[41] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. AISTATS, 9:249–256, 2010.

[42] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[43] Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural
networks applied to house numbers digit classification. ICPR, pages 3288–3291,
2012.

[44] Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun.
Pedestrian detection with unsupervised multi-stage feature learning. CVPR,
pages 3626–3633, 2013.

[45] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C Courville, and
Yoshua Bengio. Maxout networks. ICML (3), 28:1319–1327, 2013.

[46] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[47] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550, 2014.

[48] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[49] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regular-
ization of neural networks using dropconnect. ICML, pages 1058–1066, 2013.

[50] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen
Tu. Deeply-supervised nets. AISTATS, 2(3):6, 2015.

[51] Ming Liang and Xiaolin Hu. Recurrent convolutional neural network for object
recognition. CVPR, pages 3367–3375, 2015.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385, 2015.

72

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In European Conference on Computer Vision, pages
630–645. Springer, 2016.

[54] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for hyper-parameter optimization. NIPS, pages 2546–2554, 2011.

[55] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[56] Bernhard Schölkopf, Alex J Smola, Robert C Williamson, and Peter L Bartlett.
New support vector algorithms. Neural computation, 12(5):1207–1245, 2000.

[57] Alex Krizhevsky. Cuda-convnet. https://code.google.com/p/cuda-convnet/, 2012.

73

	Introduction
	Deep Learning
	Reinforcement Learning
	Hyperparameter Optimization
	Meta-Modeling
	Early Stopping
	Neural Network Performance Prediction
	Thesis Contributions

	Background
	Markov Decision Processes and Optimal Control
	Q-learning

	Designing Neural Networks Using Q-Learning
	Designing Neural Network Architectures with Q-learning
	The State Space
	The Action Space
	Q-learning Training Procedure

	Experiment Details
	Experimental Results
	Model Selection Analysis
	Top Model Performances
	Transfer Learning Ability

	Further Analysis of Q-Learning
	Q-Learning Stability
	Q-Value Analysis

	All Models Aren't Created Equal
	Visualizing The Architecture Space

	Performance Prediction for Practical Early Stopping
	Method Overview
	Modeling Learning Curves
	Early Stopping

	Experiments and Results
	Datasets and Training Procedures
	Prediction Performance
	Early Stopping for Meta-modeling
	Early Stopping for Hyperparameter Optimization

	Conclusion and Future Directions
	Tables
	Top Model Architectures

	Figures

