
Consumer Credit Risk Modeling

Bowen Baker
MIT Departments of Physics and EECS, 70 Amherst Street, Cambridge, MA 02142

(Dated: December 17, 2015)

We analyze and compare the performance of using Classification and Regression Trees (CARTs),
Random Forests, and Logistic Regression to predict consumer credit delinquency. We also im-
plement our own CART and Random forest algorithm and compare its results to the standard
implementations.

I. Introduction

Consumer spending is one of the most important factors in the macroeconomic conditions and systemic risk of
today’s market. In 2013, there was approximately 3.09 trillion dollars of outstanding consumer credit in the United
States, 856.8 billion of which was revolving consumer credit.1 With so much revolving consumer credit and the
increasing average charge-off rate, it is imperative that more sophisticated credit risk models be developed in order
to attenuate the threat of further systemic dislocation.

We propose to use machine learning methods to analyze more subtle patterns in consumer expenditures, savings,
and debt payments, than can the prominent models for consumer credit-default such as a logit, discriminant analysis,
and credit scores. As the machine learning community is still unsure which models are best suited for credit card
data, our study will aim to compare scalability, stability, and performance, of CARTs, Random Forests, and Logistic
Regression.

Using proprietary data sets from a major commercial bank (from here on referred to as ’The Bank’) we will train the
model’s forecasted scores with knowledge of whether or not customers did eventually default. Many lending entities
stand to save significant amounts of money by employing these methods.

A. The Data

The data set we were given contained 50,000 unique customers with approximately 100,000 separate accounts and
approximately 5,000,000 transactions over 13 months across these accounts. We have data given to The Bank by
the Credit Bureau, along with general customer characteristics and account details. Each account has a marker
indicating whether it had ever been delinquent and the date it first went delinquent. As is shown in Figure 1, most
of the delinquencies are concentrated in 2013, which is convenient as we only have transactions data for 2013 and
January of 2014.

In an attempt to conduct a causal experiment, our training set only has customers who went delinquent between
May and August of 2013, and our validation set only has customers who went delinquent between September and
December of 2013. Non-delinquent customers are then distributed randomly in a 70-30 split between training and
testing sets. Once again, in an attempt to maintain causality, features for a customer were only created using data
prior to that customer’s window. For instance, a customer in the training set will only have features created from
data that could be accessed prior to May, 2013.

We perform prediction on the customer level, which means we had to consolidate much of the data. A full feature
list of the cleaned data can be found on the next page.

For all of the models run, our target variable was 0 if the customer was not delinquent for more than 31 days on a
loan within the window. The target variable was set to 1 if the customer was delinquent within the window.

II. Success Metrics

Since the target variables are 0’s or 1’s, we can view the output of our predictors as a probability of delinquency.
An intuitive metric to use, therefore, is the receiver operating characteristic (ROC) and the area under the ROC curve
(AUC). The ROC is simply a plot of true positive rate (TPR) versus false positive rate (FPR) for a given probability
cutoff. A completely random predictor will produce a straight line from (0, 0) to (1, 1) with an AUC of 0.5. A perfect
predictor will produce a square ROC with an AUC of 1.

Consumer Credit Risk Modeling 2

Feature List

Transaction Data

Customer and
Accounts Data
Number of accounts
Delinquent account flag
Average loan amount
Max loan amount
Most recent loan amount
Average loan term
Loan amount for each loan purpose
Loan amount for each product
Number of accounts for each loan purpose
Number of accounts for each product
Fraud flag
Suspicious flag
Revolving credit flag
Household number
Insured marker
Age group
Marital status
Occupation
Education

Credit Bureau Data
Total inquiries
Total self-inquiries
Total co-borrower inquiries
Self-inquiries during last month
Self-inquireies during last 3 months
Credit Score
Event probability

Total cost
Max monthly cost
Min monthly cost
Total number of transactions
Max monthly number of transactions
Number of cities transactions occured
Max number of cities transactions occurred
 for 1 month
Number of countries transaction occured
Max number of countries transactions
 occurred for 1 month
Max spending, spending ratios,
 shock, moving average, and
 moving standard deviation for each
 purchase category

Purchase
Categories

 discount
 restaurant
 travel
 clothing
 entertainment
 luxury
 medical
 food
 utilities
 vehicle
 gas
 online

Loan
Purposes

 purchase
 housing
 facultative
 instalment
 commercial purpose
 structured credit
 reverse factoring
 vehicle
 employee credit
 card: 12 types

Consumer Credit Risk Modeling 3

0

250

500

750

1000

2009 2010 2011 2012 2013 2014
Date of Delinquency

N
um

be
r

of
 C

us
to

m
er

s

0

250

500

750

1000
count

First Occurence of Being 31 Days Delinquent

FIG. 1: Number of customers who went delinquent on a loan
for 31 days or more for the first time.

More concretely, the AUC is probability that a ran-
domly chosen positive sample (delinquent customer)
will be ranked higher than a randomly chosen negative
sample (non-delinquent customer).

Because models such as Credit Score and Logit pro-
duce probability like values over which one can com-
pare customers, this is a natural metric to train on and
compare with.

III. Classification and Regression Trees

Classification and regression trees recursively split
the feature space into a binary tree structure. Because
our outputs are real valued, we will just consider re-
gression trees. Each node represents a rule consisting
of the feature and value to split by. Thus if we split on
feature j on value s at node Nm, we define the left and
right children to be

leftj,s(Nm) = {x ∈ Nm|xj ≥ s} (1)

rightj,s(Nm) = {x ∈ Nm|xj < s} (2)

Choosing the best order of features to split by for each
node in the tree is NP-complete, so we will greedily
make splits and minimize the error at each node. First
we define the average output value at node m, to be

Om = mean{i|x(i)∈Nm}y
(i) (3)

and the error at node Nm to be

E(Nm) =
∑

{i|x(i)∈Nm}

(y(i) −Om)2 (4)

Thus, to find the greediest split at some node Nm we find the feature j and split value s that minimizes

E(leftj,s(Nm)) + E(rightj,s(Nm)) (5)

Apart from this we can constrain the complexity of the tree by imposing limits on its maximum depth, minimum
leaf size, and error reduction, i.e.

∆E = E(Nm)−
(|leftj,s(Nm)|

|Nm|
E(leftj,s(Nm)) +

|rightj,s(Nm)|
|Nm|

E(rightj,s(Nm))
)

(6)

The literature on CARTs posits that it is better to grow a relatively unconstrained tree and then prune it back
after. The general procedure is to remove leaves from the tree such that each removal minimizes the error gain for
the entire tree until the total error is within one standard error of the minimum.

The standard way to do a split on feature j when we have missing data is to introduce surrogate variables.
Essentially, we try to find another feature k that is highly correlated to j so that we can split the remaining data
points on k. By doing this we hope that splitting on k is similar to splitting on j. Usually one allows a few surrogate
variables and then assigns points that have still not been split to the larger child.

We note here that from here on, we will define max node size to be k, max tree depth to be md, and minimum split
error reduction to be mc.

Consumer Credit Risk Modeling 4

A. Results

We used the rpart package in the statistics framework, R. The parameters that we chose to vary and do model
selection on were minimum node size, maximum tree depth, and minimum split error reduction (given in Equation
6). We also compared this to a more simplistic custom CART we developed. We use the optim package to compute
the optimal value for continuous variable splits based on the error function given in Equation 4. For categorical splits
where the feature can be an element in the set S, we compute and compare the error for each split in the power set
of S (excluding the empty and complete set). We, however, do not prune the tree nor use surrogate variables for
missing features in our custom implementation. When there is a missing feature, we simply move the customer into
the largest child (as is done when we run out of surrogate variables in the classic CART).

Figure 2 shows the ROC curves for both standard and custom implementations. Each plot shows the ROC for
both the training and test data sets. The effect of not implementing surrogate variables and pruning is immediately
obvious when comparing the standard and custom implementation curves. The custom ROC curve is much less steep
in the low FPR region than the standard ROC curve. This can be more easily seen when comparing the area under
each ROC curve as in Figure 3.

B. Discussion

One can see how pruning can reduce over fitting in the case of a low minimum node size. The standard implemen-
tation varies very little with this parameter, whereas the custom implementation varies wildly. However, the custom
implementation does better with suboptimal values of minimum split error reduction and tree depth, which can be
seen in Figure 3b. Overall, the optimal models from custom implementation was not overly worse than those of the
standard implementation. The optimal models differed in AUC by only 0.04.

Another interesting point is that the custom implementation actually performs better on the test set than the
training set in many cases. This may seem odd; however, the overall accuracy is better for the training set, which is
consistent with our implementation. Furthermore as another sanity check, we see that in cases where the model is
allowed to overfit the training set, such as when k = 1, the training set AUC is indeed higher than that of the test
set. In addition, the overall test AUC is still lower than that of the standard implementation, so the results are not
malformed in terms of performance.

To reduce the model space over which we searched, we only varied one parameter at a time. We used a standard set
of parameters to train with when they were not specifically being varied. These were: k = 10, md = 20, mc = 0.001.

Using these results, we find that the optimal parameters and CART model is the rpart implementation with k = 10,
mc = 0.001, and md = 20 (labels defined in figure).

IV. Random Forests

Random forests are simply bagged CARTs. On each split we randomly choose a subset of fn features to consider
splitting on. We then grow n trees and average predictors, i.e.

fbag(x) =
1

B

n∑
b=1

fb(x) (7)

where fb(x) is the predictor for the bth tree. Random forests tend to greatly reduce the variance in the predictor, but
are in general less interpretable than the CART algorithm.

From here on, we define nt to be the number of trees and fn to be the number of features randomly chosen to
considered at each split.

A. Results

The standard implementation in the randomForest package in R does not use surrogate variables to characterize
missing features. To deal with this it replaces missing values with the average value of that feature for continuous
features and the mode for discrete features. The parameters that we chose to vary and do model selection on were
minimum node size, maximum tree depth, minimum split error reduction (given in Equation 6), number of trees, and
number of features chosen randomly to be considered at each node.

Consumer Credit Risk Modeling 5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

os
itiv

e R
ate

variable
Test, mc = 0.001
Test, mc = 1
Test, mc = 10
Test, mc = 100
Train, mc = 0.001
Train, mc = 1
Train, mc = 10
Train, mc = 100

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

os
itiv

e R
ate

variable
Test, md = 1
Test, md = 10
Test, md = 20
Test, md = 30
Train, md = 1
Train, md = 10
Train, md = 20
Train, md = 30

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

os
itiv

e R
ate

variable
Test, k = 1
Test, k = 10
Test, k = 100
Test, k = 1000
Train, k = 1
Train, k = 10
Train, k = 100
Train, k = 1000

ROC curve

(a) (b) (c)

(d) (e) (f)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

os
itiv

e R
ate

variable
Test, mc = 0.001
Test, mc = 1
Test, mc = 10
Test, mc = 100
Train, mc = 0.001
Train, mc = 1
Train, mc = 10
Train, mc = 100

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

os
itiv

e R
ate

variable
Test, md = 1
Test, md = 10
Test, md = 20
Test, md = 30
Train, md = 1
Train, md = 10
Train, md = 20
Train, md = 30

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

os
itiv

e R
ate

variable
Test, k = 1
Test, k = 10
Test, k = 100
Test, k = 1000
Train, k = 1
Train, k = 10
Train, k = 100
Train, k = 1000

ROC curve

Cu
sto

m
Im

pli
me

nta
tio

n
Sta

nd
ard

 Im
pli

me
nta

tio
n

FIG. 2: Figures a and d show the ROC curve for varying values of minimum split error reduction (labeled mc). Figures
b and e show the ROC curve for varying values of maximum tree depth (labeled md). Figures b and e show the ROC
curve for varying values of maximum tree depth (labeled md). Figures c and f show the ROC curve for varying values
of minimum node size (labeled k). The top row shows the performance of our custom implementation and the bottom
row the standard implementation using rpart.

●●

●

●

●
●

●

●

●

● ● ●

●

● ● ●0.5

0.6

0.7

0.8

0.9

0 25 50 75 100
Minimum Split Error Reduction

AU
C

Label
●

●

●

●

Train Custom
Test Custom
Train Standard
Test Standard

Area Under ROC Curve

(a) (b) (c)

●●

●

●

●
●

●

●

●

● ● ●

●

● ● ●0.5

0.6

0.7

0.8

0.9

0 25 50 75 100
Minimum Split Error Reduction

AU
C

Label
●

●

●

●

Train Custom
Test Custom
Train Standard
Test Standard

Area Under ROC Curve

●

● ● ●

●

●

● ●

●

● ● ●

●

● ● ●

0.70

0.75

0.80

0.85

0.90

0 10 20 30
Max Depth

AU
C

Label
●

●

●

●

Train Custom
Test Custom
Train Standard
Test Standard

Area Under ROC Curve

●

●

● ●
●

●

● ●

●●

●

●
●

● ●

●

0.8

0.9

0 250 500 750 1000
Min Node Size

AU
C

Label
●

●

●

●

Train Custom
Test Custom
Train Standard
Test Standard

Area Under ROC Curve

FIG. 3: Each figure shows the area under the ROC curve for both test and training sets and both standard and custom
implementations. Figure a shows AUC versus minimum split error reduction, figure b shows AUC versus maximum tree
depth, and figure c shows AUC versus minimum node size. The maximum AUC for the test occurred at mc = 0.001
with AUC=0.907, md = 20 with AUC=0.907, and k = 10 with AUC=0.907 (all with the standard implementation).

We also compared this to a more simplistic custom random forest we developed. We made a slight modification
to the custom CART implementation presented in Section 3 to choose a random subset of features to consider at
each split. We grew each tree on a random sample 80% the size of the original data set evenly distributed based on
delinquency (we used the same percentage in the standard implementation). Figure 4 shows the ROC curves for the
custom RF implementation. We see similar trends as with the custom CART model, though with increased AUC
values on average. The optimal custom RF model had 0.025 greater AUC than the optimal custom CART model.

Figure 5 shows the ROC curves for the standard RF implementation.

Consumer Credit Risk Modeling 6

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, nt = 1
Test, nt = 10
Test, nt = 20
Test, nt = 5
Train, nt = 1
Train, nt = 10
Train, nt = 20
Train, nt = 5

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, fn = 10
Test, fn = 150
Test, fn = 225
Test, fn = 70
Train, fn = 10
Train, fn = 150
Train, fn = 225
Train, fn = 70

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, mc = 0.001
Test, mc = 1
Test, mc = 10
Test, mc = 100
Train, mc = 0.001
Train, mc = 1
Train, mc = 10
Train, mc = 100

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, md = 1
Test, md = 10
Test, md = 20
Test, md = 30
Train, md = 1
Train, md = 10
Train, md = 20
Train, md = 30

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, k = 1
Test, k = 10
Test, k = 100
Test, k = 1000
Train, k = 1
Train, k = 10
Train, k = 100
Train, k = 1000

ROC curve

(c)

(a)

(d)

(b)

(e)

Custom Random Forest Implimentation ROC

FIG. 4: Each figure the ROC curve for both test and training sets for the custom RF implimentation. Figure a shows
the ROC for varying number of trees, figure b shows the ROC for varying number of features considered at each node,
figure c shows the ROC for varying minimum split error reduction, figure d shows the ROC for varying maximum tree
depth, and figure e shows the ROC for varying minimum node size. The maximum AUC for the test data occurred at
nt = 20 with AUC=0.888, fn = 225 with AUC = 0.895, mc = 0.001 with AUC=0.897, md = 20 with AUC=0.886, and
k = 10 with AUC=0.895.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, nt = 1
Test, nt = 10
Test, nt = 20
Test, nt = 5
Train, nt = 1
Train, nt = 10
Train, nt = 20
Train, nt = 5

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, fn = 10
Test, fn = 150
Test, fn = 225
Test, fn = 70
Train, fn = 10
Train, fn = 150
Train, fn = 225
Train, fn = 70

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, md = 1
Test, md = 10
Test, md = 20
Test, md = 30
Train, md = 1
Train, md = 10
Train, md = 20
Train, md = 30

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, k = 1
Test, k = 10
Test, k = 100
Test, k = 1000
Train, k = 1
Train, k = 10
Train, k = 100
Train, k = 1000

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osi
tive

 Ra
te

variable
Test, mc = 0.001
Test, mc = 1
Test, mc = 10
Test, mc = 100
Train, mc = 0.001
Train, mc = 1
Train, mc = 10
Train, mc = 100

ROC curve

Standard Random Forest Implimentation ROC

(c)

(a)

(d)

(b)

(e)

FIG. 5: Each figure the ROC curve for both test and training sets for the standard RF implimentation. Figure a shows
the ROC for varying number of trees, figure b shows the ROC for varying number of features considered at each node,
figure c shows the ROC for varying minimum split error reduction, figure d shows the ROC for varying maximum tree
depth, and figure e shows the ROC for varying minimum node size. The maximum AUC for the test data occurred at
nt = 20 with AUC=0.908, fn = 70 with AUC = 0.907, mc = 100 with AUC=0.908, md = 30 with AUC=0.908, and
k = 100 with AUC=0.91.

Consumer Credit Risk Modeling 7

B. Discussion

An interesting point to note are that many times the standard RF overfits the training data. This can be seen by
both the very high AUC training values shown in Figure 6 and also in the almost completely square ROC training
curves. This overtraining could be due to improper pruning or not utilizing surrogate variables during the splitting
process. It also seems as though the complexity control parameter, mc, and the max tree depth, md, have very little
affect on the standard RF implementation performance.

To reduce the model space of which we searched we only varied one parameter at a time. Our standard set of
parameters were k = 10, md = 20, mc = 0.001, nt = 10, and fn = 70. After doing model selection we found that the
optimal model was the standard RF with 20 trees, 225 features at each node, minimum split error reduction of 100,
maximum depth of 30, and minimum node size of 100.

(c)

(a)

(d)

(b)

(e)

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

0.85

0.90

0.95

1.00

0 50 100 150 200
Number of Features At Each Node

AU
C

Label
●

●

●

●

Train Custom
Test Custom
Train Standard
Test Standard

Area Under ROC Curve

●

●
●

●

●

● ●
●

●

●
● ●

●

● ● ●

0.85

0.90

0.95

1.00

5 10 15 20
Number of Trees

AU
C

Label
●

●

●

●

Train Custom
Test Custom
Train Standard
Test Standard

Area Under ROC Curve

●

●

●

●

●

●

●

●

●● ● ●

●● ● ●

0.7

0.8

0.9

1.0

0 25 50 75 100
Minimum Split Error Reduction

AU
C

Label
●

●

●

●

Train Custom
Test Custom
Train Standard
Test Standard

Area Under ROC Curve

●

●

●

●

●

● ●

●

● ● ● ●

●
●

● ●

0.8

0.9

1.0

0 10 20 30
Max Depth

AU
C

Label
●

●

●

●

Train Custom
Test Custom
Train Standard
Test Standard

Area Under ROC Curve

●

●

● ●

●

●

● ●

●●

●

●

●
●

● ●

0.7

0.8

0.9

1.0

0 250 500 750 1000
Min Node Size

AU
C

Label
●

●

●

●

Train Custom
Test Custom
Train Standard
Test Standard

Area Under ROC Curve

FIG. 6: Each figure shows the area under the ROC curve for both test and training sets and both standard and custom
RF implementations. Figure a shows AUC versus number of trees, figure b shows AUC versus number of features
considered at each node, figure c shows AUC versus minimum split error reduction, figure d shows AUC versus
maximum tree depth, and figure e shows AUC versus minimum node size. The maximum AUC for the test occurred at
nt = 20 with AUC=0.908, fn = 225 with AUC = 0.905, mc = 100 with AUC=0.908, md = 30 with AUC=0.908, and
k = 100 with AUC=0.91.

In both the RFs and CARTs we found that the most significant features in predicting delinquency were housing
loan amount, facultative loan amount, loan amounts for 3 of 26 distinct loan products (anonymized by The Bank),
max monthly online purchase amount, household number, and revolving credit marker.

V. Logistic Regression

Logistic regression (LR) is a classic model used in this field, and as such provides a good baseline with which
to compare our decision trees and random forests. LR uses the maximum likelihood of the sigmoid probability
distribution to classify feature vectors. In the two class case, where the target variable y ∈ {0, 1}, the probability that
yi = 1 takes the form

p(yi = 1|xi,w) = sigmoid(xi ·w + w0)

=
1

1 + exp (−(xi ·w + w0))

Consumer Credit Risk Modeling 8

To find the optimal weights, we want to minimize the negative log likelihood of the data given the weights, i.e.

NLL(W) = −
n∑

i=1

(
sigmoid

(
WTx(i)

)
−y(i)

)
x(i) (8)

To reduce the magnitude of the weights, we can introduce a penalty on the L2 norm of the weights into NLL(W).
One can also introduce a penalty on the L1 norm of the weights, which is a ”pointier” penalty that theoretically will
set many weights to zero. However, it is much harder to converge on a solution with an L1 penalty, so we restricted
ourselves to just doing model selection with penalties to the L2 norm.

A. Results

We used the R library penalized to perform LR. The results of varying the L2 norm can be seen in Figures 7. The
best performance on the test set occurs when L2 penalty constant is 10 resulting in an AUC of 0.888.

●

●

●

●

●

●

●

●
●

●

●

●
0.875

0.880

0.885

0.890

0.895

0 2500 5000 7500 10000
L2 Penalty

AUC

Label
●

●

Train
Test

Area Under ROC Curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tru
e P

osit
ive

Rat
e

variable
Test, L2 = 0.01
Test, L2 = 1
Test, L2 = 10
Test, L2 = 100.001
Test, L2 = 1000
Test, L2 = 10000
Train, L2 = 0.01
Train, L2 = 1
Train, L2 = 10
Train, L2 = 100.001
Train, L2 = 1000
Train, L2 = 10000

ROC curve

(a) (b)

FIG. 7: Logit ROC, figure a, and AUC, figure b, curves for both training and testing sets. L2 refers to the scaling
factor on the weight penalty. The best performance on the test set occurs when L2 penalty constant is 10 with
resulting AUC of 0.888.

Interestingly, the highest weighted features from LR, i.e. the most significant predictors, were not exactly the
same as those chosen by RF and CART. The most significant features for LR were total transaction cost, maximum
monthly transaction cost, facultative loan amount, max loan amount, average loan amount, and loan amounts for
other various products and purposes.

VI. Model Comparison

Now that we have found a set of relatively optimal models for CART, RF, and LR, we would like to compare their
performance against each other and against another industry standard, the Credit Score. We received a set of credit
scores from the The Bank, with no information on how they were actually calculated. The credit score ranges from
321 to 613 for both the training and test data sets, where a higher credit score presumably means a customer is less
likely to default. To compare this score to CARTs, RFs, and LR, we associated a probability with the customer to
be 1 minus the normalized credit score.

Figure 8 shows the performance of each model discussed compared with Credit Score. We were able to create an
ROC curve for CScore using the probabilities described above. Each model did significantly better than CScore. The
standard RF model had an AUC 0.269 greater than that of CScore. The standard RF model also did definitively
better than the Logit model by an AUC of 0.039. These results are very compelling arguments for RF models as a
good substitute for that current industry standards.

Overall, the custom implementations did not do better than the standard libraries, though this is to be expected
as they were simpler models. They also took much longer to run, which we attribute to some inefficient loops in the
code.

Another useful way to visualize these results is to actually compare the probability assigned by each models to
the set of test customers. This can be see in Figure 9, which compares randomForest’s RF, penalized’s LR, and
CScore.

Consumer Credit Risk Modeling 9

●

●
●

●

●

●

0.868

0.907 0.895
0.918

0.879

0.649
0.6

0.7

0.8

0.9

1.0

Custom CART Standard CART Custom RF Standard RF Logit Credit Score
Model

AU
C

AUC vs Model

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Model
Custom CART
Standard CART
Custom RF
Standard RF
Logit
Credit Score

ROC curve

(a) (b)

FIG. 8: CART (Custom and Standard), RF (Custom and Standard), LR, and Credit Score ROC curves in figure a and
AUC in figure b for the test set.

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●
●

●
●●

●
●●

●
●

● ●

●

●

●

●

● ●●●

●

●

●●●

●

● ●●

●

●

●

●

●

●

●

● ● ●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

● ●●●

●

●

●

●

●

● ●

●

●●

●

●
●

●

● ●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●
● ●●

●

●

●

●
● ●●

●

●

● ●

●
●

●

●
●

● ●

●

●

●

●
●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

● ●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●● ●

●

●

●
●

●●

●

●

●

●

●●

●

● ●

●●
●

●

●

●

●

●

●

●

●
●

●● ●

●●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●●●

●

●

●

●● ●●● ●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●● ●
●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●

●

● ●

●

● ●

● ●●●●

●●

●

●

●

●●

●

●

●
●

● ●

●

●

● ●

●

●

●●

●

●

●●

●●● ●
●

●

●
●

●●
●

●

●

●

● ●●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●● ●

●

●● ●

●

●
●

●

●

●
●

●

● ●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●
● ●

●

● ●

●

●
● ● ●●

●
●

●
●

●
● ●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●●

●

●

●

●

● ●
●

● ●

●

●
●

●

●

●

●
●●

●

●
●●

●

●●

●●
●

●

●

●● ● ●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

● ●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●●

●
● ●

●
●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

● ●

●

● ●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ● ●
●

●

●

●

● ●

●

●

●

●●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●● ● ●●

●

● ●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●●

●

● ●●
● ●

●

●

●

●

●

●

●

●

●● ●

●
●

●●● ● ● ●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ● ●●●●

●

●
●

●
●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●
●
●

● ●●● ●

●
●

●

●

●
●

●

●

● ●●
●

● ●

●● ●● ●●

●
●

●●

●

●

●

●●
●

● ●●

●

●

●

●

●
●●●●

●

●

●

●●

●

●●

●
●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●●

●

●

●

●

●

● ●●
●

●

●

● ●

●

●

●● ●● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

● ●●

●●

●

● ●

● ●

●
●

●

●

●
●

●

●

●

●●

●

●
●●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●

●

●

● ●● ● ●
●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●● ●

●

●●

●

●

●

● ● ●

●
●
●

●
● ●

● ●
● ●
●

●

●●

●
●●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

● ● ● ●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●●● ●●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●● ●

● ●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

● ●●

●
●●

●

● ●

●
●

●●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

● ●● ●

●

● ●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

● ●

●
●

● ●

●

● ●

●

●

●

●
●

●

●

●

● ●●

● ●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●

●

●
●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●
●

●

●
●

●●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

● ●
●

●

●
●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●●

● ●

●
●

●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●
●

●

●● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●● ● ●

●

●●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●● ● ●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●●
●

●
●

●

●
●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

● ●● ●
●

●

●

●

● ●
● ● ●

●

●

●

●
●●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●●

● ●●

●

●

●

●

●
●

●

●

●●●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●●
●

●

●

●

●

●
●●●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●
●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

● ●

●● ●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●● ●

●●

●

●
●

●

●

●

● ●
●

●

● ●

●

●
●●●● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●

●

● ●

●

●
●

●
●

●

●●

● ●●
●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

● ●●
● ●

●●

●
●

●

●

●●

●●

● ●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●

●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
● ●●

●
●

●

●

● ●

●

●
●

● ●● ●
●

● ●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●
● ● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●
●

●

●●

●
●

●●

●

●

●

●

●

●●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●●

●

●

● ●

●

● ●●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

● ●

●

●●●● ●●
●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●●

●

● ●●●
●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●● ●

●●

●● ●●

●

●

●

●

●●

●

● ●

●
●

●

● ●

● ● ●

●

●●
●●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●
●●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●
●

●● ●●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

250 350 450 550
Credit Score

Lo
gi

t R
is

k
Pr

ob
ilit

y

Delinquency
●

●

delinquent
non−delinquent

Credit Score vs Logistic Regression

●
●

● ●●
●

●

●

●

●

●
●

●

●

●●●
●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●
● ●

● ●
●

● ●
●

●●●

●

● ●●

●

●

●

● ●

●

●

● ● ●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●
●●

●
● ●●

●
● ●
● ●●

●

● ●

●

● ●●

●●

●

●

●

●
●●
●
●●

●

●

●

● ●

●

●

●

●●

●

●●
●● ●

●

●

●

●●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ● ●
● ● ●

●

●

● ●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●●
●

● ● ●● ●

●

●
● ●
●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

● ●● ●●● ●

●

●
●● ●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

● ● ●

●

●● ●

●

● ●

●

● ●

● ●
●

●●●

●

● ●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

● ●
●

●

●●

●

●

●

●

●
●● ●●●●

●

●

●

●

● ●

●

●
● ●

●

●●

●

●

●
●

● ●●

●

●

●

●●
●

●

●

●

●

●

●●● ●

●

● ●

●

●

●

●

●● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●● ●●
●

●

●

●

●

● ●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●●●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●●

●
●

●

●

●
●

●
●

●

●
● ●

●
●

● ●

●

●●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●● ●● ●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●● ●

●

●●
●

●

●

●

●

● ●
●

●

●● ●

●

●

●●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●●

●

●

●

●● ● ●●

●

●

●

●

●

● ●●

●

●
●

●

●●
●

●

●
●● ●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●●

●

● ●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●●

●●●

● ●

●● ● ●

●

●

● ●

●

●

●

●

●

● ●

●

● ●●
●

●

●

●

●

●
●

●● ●● ●

●

●

●

●
●

●

●● ●● ●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●
●

● ●

●
●

●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ● ● ●

●

●

●

● ●

●
●●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●

● ● ●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

● ● ●● ●

●

●

● ●

●
● ●

●

●● ●

●

●

●

●

●
●

●

●● ●●●●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●●
●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●●
●
● ●●

●

●●

●

● ●●

●

●● ●

●

●

●● ●

●

●●●●

●

●●
●

●

●

●●

●

●●
● ●

● ● ●● ●●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●
●

●
● ●

●

●●
●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●● ● ● ●

●

●

●●

●

●

●

●

●● ●●●

●

●●

●

●

● ● ●●●●
●
●● ●●●

●

● ● ●
●

●

●

●

●

●

●

●

●

● ●

●
●● ●●

●

●●

●

●

● ●
●

●

●

●

●
●

● ●●●

●

●

●

●

● ● ● ●●●

●

●

●

●

●

●●●

●
●

● ●

● ●
●

●

●

●
●

●

●

●

●
●

●●●● ●

●

●●

●

●

●● ●

●

●

●● ●●● ●

●

●
●

●

●
●

●●● ●● ●

●

●

●● ●

●

●●●

●

●●

●

● ●
●●●● ●●

●

●

●

●

● ●●

●
●

●

●

●

●●

● ●●
● ●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●●
●
● ● ●●

●

●

●

●● ●

●

● ●●
●●

●

● ●

●

●

●● ●● ●●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
● ●

●

●

● ●

●

●●
●

● ●●

●

●

●●

●

● ●

●

●
●

●

●●

●

●

●

●● ●

●

●
●

● ●●

●

● ●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

● ●
● ● ●

●

●●

●

●●

● ●● ● ●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●●

●

●●● ●

●

●

●

●

●

●

●● ●

●

● ●

●

● ●● ●

●

●

●

●● ●

●

●

●

●

● ●●
●

●

●

●●

●

●●
● ● ●

●

●●

●

● ●● ●● ●●

●

●

● ●

●

● ●●

●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●● ●

● ●

●

●

●
●

●●

●

● ●● ●

●

●

● ●●

●

●●● ● ●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●

●

●

●

●●● ●●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

● ●

●●

●

●

●
●

● ●
●●

● ●
●

● ●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●●

●

●

●
●

● ●●

●

●

●
●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●
●

● ●●

●
●
●
●● ●

●

● ●●●
●

●

●●

●
●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●● ●●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●●

●
●●

●

●

●●●

●

●

●●● ●● ●

●●

● ●●

●

● ●●● ●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●
●

●
●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●● ●

●

●

●
●●

●

●

●
●● ●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

● ●
●●

●●
●

● ●
●

●●
●

● ●

●

● ●●
●

●● ●● ●

● ●
● ●●●●

●

●
●●●●

●

●

●

●●

●

●

●
●

●
●

●
●

● ● ●

●

●●●

●

● ●●

●

●●

●

● ●●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●●●

●

●

●●
●

●

●

●● ●●

● ●

● ●

●

●

●●
●

●

●

●
●

●
●

●

●● ● ● ●

●

●

●● ●

●

●●● ●

●

●●

●

●

●

●● ●●

●

●

●
● ●● ● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●
●●

●

●

●

●
●●● ●

●

●

●●

●

●

●●

●

●
● ●

●●
●

●

●●●

●

●

●

●●

●

●●

●
● ● ●●

●

●

●

●

●
●●●●

●

●●●

●

●

●

●

●

●

●

●

● ●●

●

● ●
●
●

●

●
● ● ●●
●●

●
●●

●

●●

●

●●
●●

●●

●

●

●

● ●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●●

●

●

●

●

●● ●

●

●
●

●

●

●● ●

●

● ●●●

●

●
●●

●
●

●

●

●

●
●

●●

●

●
●

●

●● ●

●

●

● ●
●

●

●

● ●● ●●

●

●

●

●

● ●●

●

●
●

●

●
●

●

●
●

●●●●

●

●

●

●

●● ●

●

●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●●● ●

●

●

●

● ●●●● ●●●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●● ●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

● ●●●●
●●●

●●
●

●

●

●

●

●

●

● ●

●●

●

●● ●●

●

●

●

●

●

●

●
●

●

●●●
●

● ●

●

●
●

●● ●
●

●

● ●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●● ●●●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

● ●●

●

● ●

●●
●

●

●
● ●●

●
●

●
●

●

●

●

●

●

● ●● ●
●

● ●●●● ●

●
●

●

●

●

● ●

●

●

●

●
●

●
● ●

●

●
●

●●
●●

●

● ●

●

●

●

●● ● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

● ●

●
●●● ●● ●

●

● ● ●● ●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

● ●

●

● ● ● ● ●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

●

● ●●

●

● ●●

●

●● ●

●

●●●● ●●●

●

●●●●
●

●

●

●

●

●

●

●

● ●●●

●

● ●●

●

●

●

● ● ●●●
●

●

●● ●●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●●●

●

●
●

●

●

●

●● ●● ● ●
●●

● ●●

●

●

●

●

●●
●

● ●

●

●

●

●

●

● ● ●
●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●●

●

●
●

●

●

● ●

●

● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ● ●

●

●

●●

●

●

●●
●

● ●

●●

●

● ●

●

●●● ●

●

●

●
●

●

●

●

●
●

●

●

●
●0.00

0.25

0.50

0.75

1.00

250 350 450 550
Credit Score

R
an

do
m

 F
or

es
t R

is
k

Pr
ob

ilit
y

Delinquency
●

●

delinquent
non−delinquent

Credit Score vs Random Forest

●
●

●
●

●

●

●●● ●●

●
●●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●
●●
●

●

●●

●

●

●●

●

●

●

●

●

● ●
●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●
● ●

●●●
● ●
●● ●

●
●●

●

● ●●●

●

●●

●
●

●
●●

●

●●

●

●
●
●

●●●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●●●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●●
●

●

●●●
●

●

●

●●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●
●

●

●
●●

●●●
●●

●

●

●
●

●
●

● ●

●

●
●

●●●●

●

●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●●●

●

●

● ●●

●

●● ●●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●

●

●●
●

●

●

●●
●

●
●
●

●

●●

●

● ●●

●

●
●

●●

●

●

●
●

●
●●

●

●●
●

●

●● ●
●

●● ●

●

●●
●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●●●●

●●

●●

●

●

●●

●

●

●● ●
●●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●●●●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ● ●●

●

●●

●

●●● ●

●

●

●

●●● ●

●

●●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

● ●

●

●

●

●

●

●●●●

●

● ●●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●●

●

●●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●
●

●

●● ●●

●

●●●●●●

●

●

●
●●

●

●

●

●●

●

●●●●
●●

●

●

●

●
●

●

●●
●

●

●

●

●●●●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●●●●

●

●●●●●

●

● ●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●●

●

● ●

●

●

●●

●

●
●●

●

●●●

●

●

●

●●●●
●

●

●

●
●●

●

●

●

●●
●

●●

●
●●●●

●

●●●●●●●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

● ●
●●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

● ●●●●

●

●

●

●● ● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●

●

●

● ●●

●

●●●
●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●● ●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●● ●

●

● ●●

●

●
●●●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●●●●●

●

●
●

●

●●
●

● ●●

●

● ●

● ●

●

●

●

●

●

●
●

●●

●

● ●●●

●

●

●

●

●

●

●●
●
●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●●●

●
●●

●

●

●

●

●●
●●●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●● ●

●
● ●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●●●●

●

●
●

●●●
●

● ●

●

●

●

●
●

●

●

●

●
●●

●
●●
●
●●

●●

●

●●
●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●
●

●●● ●●

●

●

●●●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●

●

●

●
●

●

●●●●●●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●● ●●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●●

●

● ●●

●

●●●

●

●●●
● ●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●●●●●

●

●
●

●

●●
●

●●●
●●

● ● ● ●
●●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●
●

●

● ●

●

●

●

●● ●●

●

●
●

●●
●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●●●●

●

●
●● ●● ●●●

●

●● ●●● ●

●

●
●●

●

●●
●

●

●● ●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●●
●●●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●●●

●

●

●

●●●●

●

●

●●●● ● ●●

●

●

●

●●

●

●
●

●● ●●

●

●

●
●

●

●

●
●
●●

●
●

●

● ●
●
●
●

●

●

●
●

●

●

●

●

●

●●

●
●●

●● ●

●

●●●●●

●

●

●
●

●
●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●● ●●●

●

●●●●

●

●
●

●

●

●

●

●
●

●●
●●●

●

●
●

●●● ●

●
●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

● ●●

●

●
●
●●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●● ●●●

●

●●

●

●

●

●

●●

●

● ●●

●

●

●●● ●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●● ●●●●

●

●

●

●

●●
●

● ●

●●●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●
●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●●●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●●●

●

●
●●

●

●

●●

●

●●●

●

●

●●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●●●●

●

●
●

●●

●

●

●

●●●●

●

●
●

●
●

●

●

●

●●●

●

●

●

●● ●●●●
●
●●●●●

●

●

●

●

●●
●

●

●● ●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●
●

●
●

●● ●●

●

● ● ●

●

●

●●● ●●●
●

● ●

●

●

●●●●●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●●

●

●

●●
●

●

●
●

●

●

●
●

●

●●

●

●● ●●●●
●●

●●

●

●●●

●●

●●

●

●●●

●

●

●

●

●●

●

●

● ●●

●

●●● ●●
●

●●

●

●

●

●

●

●

●

●●
●

●●●●●

●

●
●

●
●

● ●●● ●
●

●

●

●●●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●
●

●
●

●●

●

●● ●

●

●
●●

●

●● ●●
●

●

●

●●●● ●

●
●
●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

● ●

●

●

●
●

●

●
●

●

●●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

● ●●

●

● ● ●

●

●

●

●

●

●

●

●●●●●
●

●

●

●

●●●●●●●●●

●

●
●

●

●

●
● ●●

●
●

●●

●

●

●●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●
●

●●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●
●●●

●

●

●

●

●●●●

●

●

●●●●

●

●
●

●
●

●

●

●

●

●

●● ● ●●●

●

●

●

●●●● ●●
●

●

●

●

●●●●●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●●

●

●● ●●

●

●
●

●●
●●

●

●

●●

●
●

●

● ●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●
●
●

●●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●
●●●●●●

●

● ●
●
●●

●

●

● ●

●

● ●●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●●● ●●

●

●

●

●

●●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●●

●

●●

●

●
●
●

●

● ●●

●

●●●● ●

●

●●

●

●

●

●

●●
●

●

●

●
●

●
●
●

●

●

●●

●

● ●●

●

●

●

●

●●●●●

●●

●

●

●●

●

●

●●

●

● ●●

●

●

●

●
●

●

●●●

●

●● ●

●

●
●

●

●●
●

● ●●

●

●●●●

●

●

●● ●●

●

●●●●●

●

●

●

●●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●
●●●

●

●●●●●

●

●●
●

●

●

●●

●

●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●●

●●

● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
● ●●●

●
●
●
●●●●●●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●● ●● ●●●
●

●●●
●

●

●● ●
●

●●●

●●

●

●●●●●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●●
●

●●●●

●

●

●

●● ●

●●
●

● ●

●

●

●●

●

●

●

●

● ●
●●

●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●●
●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●● ●
●

●
● ●

● ●
●

●

● ●

●●

●●

●

●

●

● ●

●●●
●

●

●

●● ●●●●

●

●

●●

●

●

●

●●
●
●

●

●●●●
●

●

●

● ●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●
● ●
●●

●

●

●

●●

●

●

●

●

●●

●

●●●
●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●●
●
● ●●

●

●● ●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●
●

●
●

●●

●

● ●

●

●●

●

●
● ●

●

●

●● ●●

●

●

●

●

● ●
●

●

●●●
●

●●●●

●

●●

●

●

●● ●

●

●

●

●

●

●●●●●●

●

●

●

●●●●●
●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●●

●

●

●

●●●● ●

●

●●●●

●

●●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●●

●

●
●

●●● ●●●

●
●●

●

●●● ●●

●

●

●
● ●

●●●
●●

●

●

●

●

●

●

●
●

● ●●● ●●●●

●

●

● ●

●

●

●●●

●

●●
●

●

●
●

●●●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

● ●

●

●
●●

●
●

●

●

●
●

●

●●●●
●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●●

●

●●

●

●●
●

●

●

●

●

●

●●

●
●●

●
●

●

●●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●
●●

●
●

●

●●

●

●●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●
●

●

●

●● ●●●

●

●

●
●

● ●

●

●

●

●●●●● ●●●

●

●●
●

●
●●

●

●

●

● ●●

● ●

●

●

●

●●

●

●

●

●

●

●

●● ●●●
●

●
●

● ●●
●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●
●●●

●
● ● ●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●●
●●

●

●

●

●●

●

●

●● ●
●

●

●

● ●
●
●●

●

●●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●●●

●

●

●
●

●●
●●●●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●
●

●

●

●

●●●

●

●

● ● ●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●
●

● ●●

●

●
●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●●

● ●●●

●
●

●●

●

●● ●●●

●

●
●
●

●
●●

●●●●

●

●

●
●

●

●

● ●● ●●

●

●

●
●

●

●

●
●●

●

●

●

●

● ●

●

●● ●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●●
●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●●
●

●

●

●
●

●
●

●

●

●

●●

●●

●●

●

●
●

●●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●●

●

●●
●●

● ●

●

●

●

●●

●

●
●

●● ●●

●

● ●
●

● ●
●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●
●

●

●●
●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●●
●●
●

●

●

●

● ●

●

●● ●●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●
●

●

●

●●

●

●●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●●
●

●

●●●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

● ●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●
●

● ●●
●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●
●●

●

● ●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●●●

●
●● ●●

●

●

●
●

●●
●●

●

● ●

●

●
●

●

● ●

●

●
●

●●●

●

●

●

●●

●

●

●
●

●

●●●
●

●

●

●

●●●●
●
●

●

● ●● ●
●●

●●●● ●●

●

●
●●

●

●
●

●

●

●
●●●●●

● ●

●●●●
●

●

●

●●●●

●

●

● ●

●
●

●●●

●

●●

●

●●
●●

●
●

●

●

●
●

● ●
●

●

●
●●●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●

●●
●●

●
●

●

●

●●

●

●

●●
● ●● ●●

●

●●

●

●● ●

●

● ● ●
●●●●●●

●

●

●

●

●●

●

●

●● ●●●●●●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●●

●

●
●●● ●●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●●●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●●

●

●●●●

●

●●

●

●●●● ●

●

●

●
●

●

●●

●

●●● ●●

●

●●

●

●

●●

●●

●

●

● ●
●

●

● ●● ●● ●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●●

●●●

●

●
●

●●●●●
●

●
●

●

●

●●

●●

●

●

●

●
●●

●
●

●

●

●●

●

●●● ●●● ●
●

●

●●

●

●

●

●

●●●
●

●

●●
●

●

●

●●

●

●●

●

●

●

● ● ●●●●

●

●●●

●

● ●

●

●

●●

●

●

●

●● ●

●
●

●

● ●●

●

●

●●
●● ●●●

●

●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

● ●

●

●●

●

●●● ●●

●

●

●
●

●
●

●

● ●●●
●

●

●

●
●

●

●●

●

●●

●

●

●
●

●
●

●

●

●●●●●
●●●

●

●

●

●

●●●

●

● ●

●● ●

●

●●

●

●
●

●●
●

●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●●

●●●

● ●

●

●

●

●

●●
●

●●

● ●

●●●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●●

●

● ●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●●

●
●

●
●

●

●●
●● ●

●

●●

●

●

●

●

●

●●
●

●●
●

●● ●
●● ●●

●

●

●

● ●

●

●

●

●●●

●
●

●

●●
● ●
●●●●●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●● ●●
●●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●●

●

●

●
●

●
●

●
●●

●

●●●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●●
●

●●

●

●●●●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

● ●● ●

●

●● ●● ●●●●●

●

●

●

●●

●

●

●●●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●● ●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●
●

● ●

●

●

●

●

●●● ●●●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●
●
●●

●
●

●●● ●●

●

●

●●

●

● ●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●● ●●● ●●

●

●●

●

●

●

●

●
●

●●

●

●●
●

●●

●

●● ●●●●

●

●●

●
●

●

●

●●●●

●

●

●
●

●●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

● ● ●● ●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●● ●●

●

●●

●

●

●
●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●●●●●
●
●
●

●

●

●

●●●
●

●
●

●

●

●

●

●●

●

●

●
● ●

●●

●

●

● ●

●

●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●●●

● ●

●

●

●

●

●
●

●

●

● ●

●●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●
●●

●

●

●

●
●
●

●

●● ●●●

●

●● ● ●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●●●●●●●

●

●●

●

●

●

●
● ●

●

● ●●

●●

●

●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

● ●

●

●

●●

●

●

●

●
●

●
●●●

●
●

●

●●●

●

●

● ●

●

●

●

●●●

●

●
●

●

●

●

●

●
●●●●●

●

●
● ●●●●

●

●●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●●●●

●

●●● ●●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●●●●●

●

●

●

●●
●

●

●● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●●● ●●

●

●●
●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

● ●●

●

●

●

●●
●

●●● ●●
●

●

●

●

●●● ●

●

●
●

●

●●

●

●●●●●●

●

●

●
● ●
●

●

●●

●

●

●

●●

●

●●
●

●

●●

●

●

●
●●

●
●●

●

●
●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●
●●

●

●

●

● ●●●
●

●

●
●

●●

●●
●

●
● ●

●

● ●● ●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●● ●● ●●

●

●

●

●

●

●

●

●

●● ●●● ●●

●

●

●

● ●

●

●

●
●●

●
●

●

●●●●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

●●●●●

●

●

●

● ●

●●●

●

●
●

●

●

●

●

●

●●

●

● ●●●

●

●●●●

●

●●

●

●●●●

●

●
●

●

●

●●●

●

●●●

●

●
●●●

●

●
●

●

●

●

●

●
●●

●
● ●

●
●●●

●

●

●

●

●

●

●●●●

●

●

●

●●●
●

●●●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●●●●●●

●

●

●

●

●●●●●

●

●

●

●

●
●●

●
●

●

●●●
●

●

●● ●●●●
●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●
●
●

●●
●

●

●

●

●●
●

●●● ●● ●

●

●● ●

●

●

●

●

●●

●

●
●

●

●
●

●●
●

●

●●●

●

●● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

● ●●

●
●

●

●● ●●

●●

●

●●●
●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
● ●

●

●

● ●

●●
●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●●
●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●● ●
●●

●

●

●● ●●
●

●●

●

●

●

●●
● ●●

●

●

●

●●

●

●

●●● ●●●

●

●●

●

●

●●
●

●

●

●

●
●

●●
●

●

●●

● ●
●

●

●●
●

●

●●●

●

●

●

●
●●●

●

●
●

●

●

●

●●●

●

●

●
●

●

●●●

●

●●

●
●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●

●

● ●

●

●●

●

●

●●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●●
●

●

●●

●

● ● ●●
●

●

●●●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

● ●●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●●

●

●0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Logistic Regression Risk Probability

R
an

do
m

 F
or

es
t R

is
k

Pr
ob

ilit
y

Delinquency
●

●

delinquent
non−delinquent

Logistic Regression vs Random Forest

(a) (b) (c)

FIG. 9: Model probability comparison with delinquency labeled. Figure a shows CScore versus LR; figure b shows LR
versus RF; figure c shows CScore versus RF.

VII. Further Work

There are many ways in which we could have improved this study which leaves much room to conduct future studies.
The randomForest library does not introduce surrogate variables when the feature that is being split is missing.
Many features in the data set had a significant amount of missing values, so we think we could stand to gain much
by introducing this feature. Furthermore, we did a very simplistic model selection, only varying one parameter at a
time. In the future we could consider searching a more complete model space with a decreasing granularity. We could
also consider doing model selection on a different metric. For instance, one could do model selection on the aggregate
expected income from loans..

Characterizing how much money could be saved by switching predictive models would further strengthen our claim.
We would also like to broaden our study with data sets from other loaning entities, so that we may identify the most
significant features in the space as a whole and not for just a single region or bank.

There are also other models we would like to test the performance of on consumer credit data, including Support

Consumer Credit Risk Modeling 10

Vector Machines (even though they wouldn’t produce probabilities), Artificial Neural Networks, and Deep Learning.
However, even were these models to perform on par with or better than RFs, they are significantly harder to interpret.

VIII. Acknowledgements

I would like to acknowledge my collaborators, Andrew Lo, David Fagnan, Yuwei Zhang, and Danny Yuan. Every-
thing presented in this paper was original work done by myself except the original data cleaning for which Yuwei,
Danny, and David collaborated.

[1] Troyer, Matthias. Lecture. ”Introduction to many-body quantum mechanics.” Computational Quan-
tum Mechanics. Institute For Theoretical Physics at Swiss Federal Institute of Technology Zurich. 2012.
www.itp.phys.ethz.ch/education/fs12/cqp/chapter04.pdf

[2] Khandani, Amir E., Adlar J. Kim, and Andrew W. Lo. ”Consumer credit-risk models via machine-learning algorithms.”
Journal of Banking & Finance 34 (2010): 2767-2787.

[3] Bellotti,Tony,andJonathanCrook.”Support vector machines for credit scoring and discovery of significant features.” Expert
Systems with Applications 36.2 (2009): 3302-3308.

[4] Atiya, Amir F.”Bankruptcy prediction for credit risk using neural networks: A survey and new results.” Neural Networks,
IEEE Transactions on 12.4 (2001): 929-935.

[5] Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.

